透過您的圖書館登入
IP:18.189.14.219
  • 學位論文

含雙醯胺吡啶配位基之配位高分子的合成、結構與特性研究

Synthesis, Structures and Properties of Coordination Polymer Containing Dipyridyl Ligands Bearing Amide Groups

指導教授 : 陳志德

摘要


本論文主要分為五部份探討柔軟型配位基,包含N,N’-di(3-pyridyl)adipoamide (L1)、N,N’-di(2-pyridyl)adipoamide (L2)、 N,N’-di(4-pyridyl)adipoamide (L3)和 N,N’-di(3-pyridyl)dodecanedioamide (L4) 與過渡金屬反應之合成、結構、熱性質及放光性質探討。所有合成之化合物皆利用紅外線光譜儀、紫外-可見光光譜儀、放光光譜儀、元素分析、熱重分析及單晶X光繞射進行鑑定分析。 在第一部分中,配位基L1與AgPF6和AgSbF6在乙腈下反應,可得到一維凹凸鏈{[Ag(L1)](PF6) • 2CH3CN}∞, 1a和{[Ag(L1)](SbF6) • CH3CN • 0.5H2O}∞, 2a; 然而當配位基L1與AgBF4和AgNO3在乙腈下反應及AgPF6、AgSbF6、AgBF4和AgCF3SO3在二甲基甲醯胺下反應,可得到一維Z字鏈{[Ag(L1)](BF4) • CH3CN}∞, 3a, 和 {[Ag(L1)](NO3) • CH3CN}∞, 4, 及 {[Ag(L1)](PF6) • 4DMF}∞, 1b, {[Ag(L1)(DMF)](SbF6)}∞, 2b, {[Ag(L1)](BF4) • 4DMF}∞, 3b 和 {[Ag(L1)](CF3SO3) • DMF}∞, 5。化合物1a及2a配位基構型為AAA trans syn-anti形成一維凹凸鏈,在其他化合物中配位基構型則為AAA trans syn- syn 形成一維Z字鏈,陰離子形狀和大小及溶劑是重要的在決定結構差異。當使用乙腈為溶劑,化合物PF6-和SbF6-陰離子具有八面體構型而形成一維凹凸鏈,然而BF4-和NO3-陰離子具有四面體及平面三角構型而形成一維Z字鏈,而其他化合物使用二甲基甲醯胺為溶劑,則與陰離子形狀及大小無關,皆得到一維Z字鏈。 在第二部分中,{[Ag(L1)](ClO4) • CH3CN}∞, 6, {[Ag(L1)](ClO4)}∞, 7, [Ag2(L1)2](p-TsO)2 • 2CH3CN (p-TsO = p-toluenesulfonate), 8, 和 [Ag(L1)(p-TsO)]∞, 9,化合物6、7為一維鏈,化合物8為零維雙核金屬巨環,化合物9為二維皺摺格子狀且具有{4,82}的拓撲結構。隨著超分子結構、配位基構型及放光性質的轉變,化合物6、7為可逆的晶體轉換,而化合物8、9則為不可逆的晶體轉換,Ag---N、Ag---O作用力為結構轉換主要的驅動力。 在第三部分中,使用雙醯胺吡啶配位基和苯二甲酸(BDC2-)配位基,藉由水熱法合成八個二價鋅和二價鎘配位高分子化合物, [Zn(1,2-BDC)(L1)]∞, 10; [Zn2(1,3-BDC)2(L1)(H2O)2]∞, 11; [Zn2(1,4-BDC)2(L2)(H2O)2]∞, 12; {[Zn2(1,2-BDC)2(L3)(H2O)2] • 2H2O}∞, 13; {[Cd(1,2-BDC)(L1)(H2O)] • H2O}∞, 14; [Cd2(1,3-BDC)2(L1)(H2O)4]∞, 15; {[Cd2(1,4-BDC)2(L1)2] • (H2O)3}∞, 16; [Cd2(1,4-BDC)2(L2)(H2O)2]∞, 17。其中化合物10為一維圈狀鏈、化合物13為一維圈與鏈、化合物15為一維階梯鏈,化合物11、12、14及17為二維皺摺網,化合物16則為三維結構。BDC2-配位基的鍵結模式是重要的在決定結構維度。在化合物10 – 15和17中,BDC2-配位基為μ2鍵結模式,然而在化合物16中,BDC2-配位基則具有μ2和μ4鍵結模式而形成三維結構。 在第四部分中,使用雙醯胺吡啶配位基和吡啶二甲酸(PDC2-)配位基或苯三甲酸(BTC3-)配位基,藉由水熱法合成九個配位高分子化合物,{[Zn2(2,5-PDC)2(L1)(H2O)2] • 2H2O}∞, 18; [Zn2(2,6-PDC)2(L1)]∞, 19; {[Zn2(3,4-PDC)2(L1)(H2O)6] • 4H2O}∞, 20; {[Cd(2,6-PDC)(L1)(H2O)] • 4H2O}∞, 21; [Zn(1,3,5-HBTC)(L1)]∞, 22; {[Cd(1,2,3-HBTC)(L1)(H2O)] • H2O}∞, 23; {[Cd2(1,3,5-HBTC)2(L1)(H2O)2] • 2H2O}∞, 24; {[Zn3(1,2,4-BTC)2(L1)(H2O)4] • 4H2O}∞, 25; {[Cd3(1,3,5BTC)2(L3)3(H2O)3] • 3H2O}∞, 26,化合物20、21為一維階梯鏈,化合物18、19和22為二維皺摺網,化合物24為二維層狀結構,化合物23、25和26為三維結構。在化合物25和26中,BTC3-配位基為μ3鍵結模式而形成三維結構。 在第五部分中,使用N,N’-di(3-pyridyl)dodecanedioamide (L4)配位基和多甲酸配位基藉由水熱法合成五個配位高分子化合物,[Zn(2,4-PDC)(L4)(H2O)]∞, 27; {[Zn(1,3,5-HBTC)(L4)] • 2H2O}∞, 28; {[Zn(3,4-PDC)(L4)] • 0.5L4}∞, 29; {[Cd(1,2-BDC)(L4)(H2O)] • 0.5L4}∞, 30; {[Cd(1,3,5-HBTC)(L4)1.5] • 2H2O}∞, 31,化合物27為一維管狀鏈、化合物28為一維鏈、化合物29為一維魚骨狀鏈,化合物30、31為二維皺摺網。

關鍵字

配位高分子

並列摘要


This thesis includes five parts discussing the syntheses, structures and thermal and luminescent properties of a series of metal complexes containing the flexible N,N’-di(3-pyridyl)adipoamide (L1), N,N’-di(2-pyridyl)adipoamide (L2), N,N’-di(4-pyridyl)adipoamide (L3) and N,N’-di(3-pyridyl)dodecanedioamide (L4) ligands. All complexes have been characterized by IR, UV-vis and emission spectra, EA and TGA analysis and single-crystal X-ray diffraction. In the part I, the reactions of L1 with AgPF6 and AgSbF6 in CH3CN afforded the 1D concavo-convex chains {[Ag(L1)](PF6) • 2CH3CN}∞, 1a and {[Ag(L1)](SbF6) • CH3CN • 0.5H2O}∞, 2a, while the reactions of L1 with AgBF4 and AgNO3 in CH3CN, and AgPF6, AgSbF6, AgBF4 and AgCF3SO3 in DMF gave the 1D zigzag chains {[Ag(L1)](BF4) • CH3CN}∞, 3a, and {[Ag(L1)](NO3) • CH3CN}∞, 4, and {[Ag(L1)](PF6) • 4DMF}∞, 1b, {[Ag(L1)(DMF)](SbF6)}∞, 2b, {[Ag(L1)](BF4) • 4DMF}∞, 3b and {[Ag(L1)](CF3SO3) • DMF}∞, 5, respectively. In complexes 1a and 2a which show 1D concavo-convex chains, the L1 ligands adopt the AAA trans syn-anti conformation, whereas in other complexes which show the 1D zigzag chains, the L1 ligands adopt the AAA trans syn-syn conformations. The shapes and the sizes of the anions as well as the identity of the solvents are important in determining the structural diversity. For the complexes with the CH3CN solvents, the larger PF6- and SbF6- anions which adopt the octahedral geometry induce the 1D concavo-convex chains, while the smaller BF4- and NO3- anions which adopt the tetrahedral and triangular geometries induce the 1D zigzag chains. For complexes with the DMF solvents, all the complexes adopt the 1D zigzag chain, regardless of the shapes and sizes of the anions. In the part II, the complexes {[Ag(L1)](ClO4) • CH3CN}∞, 6, {[Ag(L1)](ClO4)}∞, 7, [Ag2(L1)2](p-TsO)2 • 2CH3CN (p-TsO = p-Toluenesulfonate), 8, and [Ag(L1)(p-TsO)]∞, 9, are reported. Complexes 6 and 7 form 1D linear chains, while 8 and 9 show a 0D dinuclear metallocycle and a 2D pleated grid with a {4,82} topology, respectively. Reversible crystal to crystal transformation was observed in 6 and 7 upon removal and uptake of the acetonitrile molecules, while the process is irreversible in 8 and 9, which are concomitant with changes in supramolecular structures, ligand conformations and luminescent properties. The main driving forces for the structural transformations are the Ag---N and Ag---O interactions. In the part III, using dipyridyladipoamide ligands and benzenedicarboxylate ligands, eight Zn(II) or Cd(II) complexes have been synthesized under hydrothermal conditions. The complexes [Zn(1,2-BDC)(L1)]∞, 10; [Zn2(1,3-BDC)2(L1)(H2O)2]∞, 11; [Zn2(1,4-BDC)2(L2)(H2O)2]∞, 12; {[Zn2(1,2-BDC)2(L3)(H2O)2] • 2H2O}∞, 13; {[Cd(1,2-BDC)(L1)(H2O)] • H2O}∞, 14; [Cd2(1,3-BDC)2(L1)(H2O)4]∞, 15; {[Cd2(1,4-BDC)2(L1)2] • (H2O)3}∞, 16; [Cd2(1,4-BDC)2(L2)(H2O)2]∞, 17, are reported. Complex 10 is a 1D loop-like chains, complex 13 exhibits 1D chains with loops and complex 15 shows 1D ladder chains, whereas complexes 11, 12, 14 and 17 show 2D pleated nets, and complex 16 exhibits a 3D framework. The bonding modes of BDC2- ligands play an important role in determining the structural dimension. In complexes 10 – 15 and 17, the BDC2- ligands adopt the μ2 bonding mode, whereas in complex 16, the BDC2- ligands adopt both the μ2 and μ4 bonding modes to form 3D frameworks. In the part IV, using dipyridyladipoamide ligands and pyridinedicarboxylate or benzenetricarboxylate ligands, nine complexes have been synthesized under hydrothermal conditions. The complexes {[Zn2(2,5-PDC)2(L1)(H2O)2] • 2H2O}∞, 18; [Zn2(2,6-PDC)2(L1)]∞, 19; {[Zn2(3,4-PDC)2(L1)(H2O)6] • 4H2O}∞, 20; {[Cd(2,6-PDC)(L1)(H2O)] • 4H2O}∞, 21; [Zn(1,3,5-HBTC)(L1)]∞, 22; {[Cd(1,2,3-HBTC)(L1)(H2O)] • H2O}∞, 23; {[Cd2(1,3,5-HBTC)2(L1)(H2O)2] • 2H2O}∞, 24; {[Zn3(1,2,4-BTC)2(L1)(H2O)4] • 4H2O}∞, 25; {[Cd3(1,3,5BTC)2(L3)3(H2O)3] • 3H2O}∞, 26, are reported. Complexes 20 and 21 exhibit 1D ladder chains. Complexes 18, 19 and 22 possess 2D pleated nets and complex 24 shows a 2D layer structure. Complexes 23, 25 and 26 show 3D frameworks. In complexes 25 and 26, the BTC3- ligands adopt the μ4 and μ3 bonding modes to form 3D frameworks. In the part V, using N,N’-di(3-pyridyl)dodecanedioamide (L4)ligands and multicarboxylate ligands, five complexes have been synthesized under hydrothermal conditions. The complexes [Zn(2,4-PDC)(L4)(H2O)]∞, 27; {[Zn(1,3,5-HBTC)(L4)] • 2H2O}∞, 28; {[Zn(3,4-PDC)(L4)] • 0.5L4}∞, 29; {[Cd(1,2-BDC)(L4)(H2O)] • 0.5L4}∞, 30; {[Cd(1,3,5-HBTC)(L4)1.5] • 2H2O}∞, 31, are reported. Complex 27 exhibits 1D tube like chains, while complex 28 possess 1D infinite chains and complex 29 shows 1D fish-bone chains. Complexes 30 and 31 show 2D pleated nets.

並列關鍵字

coordination polymer

參考文獻


Growth Des., 2010, 10, 685.
14 G. M. Sheldrick, Acta Crystallogr., 2008, A64, 112.
18 (a) R. P. Sijbesma and E. W. Meijer, Curr. Opin. Colloid Interface Sci. 1999, 4, 24; (b) S. C. Zimmerman and P. S. Corbin, Struct. Bonding, 2000, 96, 63; (c) D. C. Sherrington and K. A. Taskinen, Chem. Soc. Rev., 2001, 30, 83; (d) D. S. Lawrence, T. Jiang and M. Levett, Chem. Rev., 1995, 95, 2229.
24 S. Muthu, J. H. K. Yip and J. J. Vittal, J. Chem. Soc., Dalton Trans. 2002, 4561.
25 A. Bondi, J. Phys. Chem., 1964, 68, 441.

延伸閱讀