透過您的圖書館登入
IP:3.21.34.0
  • 學位論文

大氣環境之細懸浮微粒(PM2.5)長期暴露之健康風險分析-以桃園市、臺中市與高雄市為例

Health Risk Assessment of Long-Term Ambient PM2.5 Exposure in Taoyuan, Taichung, and Kaohsiung City, Taiwan

指導教授 : 王玉純
本文將於2024/08/15開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


近年來工業產業快速發展,石油工業、發電業及鋼鐵冶煉業等工業活動所排放之污染物—細懸浮微粒(PM2.5),為臺灣目前高度關注之污染物,已有許多研究證實PM2.5會對人體健康造成危害,因PM2.5為粒徑小於2.5微米之顆粒,其會滲透至肺部對人體呼吸系統及心血管系統造成危害,故又稱可吸式粉塵。根據行政院環保署空氣污染排放總量資料庫清冊系統(Taiwan Emission Data System, TEDs)2006年統計數據顯示,臺灣三大工業城市:桃園市、臺中市及高雄市之污染源達五千多處,所產生之污染物更高達八千噸。本研究利用空氣擴散模型評估2006年至2015年桃園市、臺中市及高雄市長期暴露於固定污染源PM2.5之情形。 本研究於中央氣象局取得2006年至2015年地表及探空之氣象數據;而固定排放源之數據取自於TEDs 7.0至9.0版次,排放數據經由高斯煙流美國氣象學會/環境保護局監管模式(American Meteorology Society/Environmental Protection Agency Regulatory Model, AERMOD),將各城市之永久性排放源與氣候、地形數據結合,推估固定污染源PM2.5逐年及逐時之濃度分布情況,並將其結果利用地理資訊系統(Geographic Information System, GIS)繪製研究地區之濃度等值線圖。 AERMOD分析結果顯示,2008年於桃園區及中壢區有最高PM2.5濃度,最大日平均濃度為65.3μg/m3,年平均濃度為10.7μg/m3,推測其與東北風相關;同年於臺中市PM2.5最大日平均濃度為25μg/m3,年平均濃度為5.4μg/m3,主要來源為工業區排放所致;而高雄市西南地區於2013年有最高PM2.5濃度,最大日平均濃度為55μg/m3,年平均濃度為6.8μg/m3。 此外,本研究結果發現桃園區、中壢區及小港區PM2.5之模擬值皆高於觀測結果,推測其固定污染源排放位置及密度對於空氣污染物擴散模擬結果具有顯著影響,建議未來進行空氣污染相關之大眾健康風險評估時,模式之模擬數據及實際觀測數據皆應納入考量。

並列摘要


Particulate matter with aerodynamic diameter ≤ 2.5 μm (fine particulate matter, PM2.5) is one of the pollutants released from industrial activities, referred to as respirable dust because it can penetrate into the pulmonary parenchyma and cause various types of respiratory diseases. In Taoyuan, Taichung and Kaohsiung, three major cities with huge stationary sources in Taiwan, more than 5000 released sources and 8,000 tons of PM2.5 were released from all industrial activities in 2006, including the petroleum industry, electricity generation, and so on. This study aims to evaluate long-term ambient PM2.5 exposures, emitted from stationary sources from 2006 to 2015 in Taoyuan City, Taichung City and Kaohsiung City using the air dispersion model. Surface and sounding meteorological data from 2006 to 2015 were obtained from Taiwan Central Weather Bureau. The stationary emission sources were retrieved from Taiwan Emission Database (TEDs) versions 7.0 (from 2007 to 2009), TEDs versions 8.0 (2010 to 2013), and TEDs versions 9.0 (2014 to 2015) from Taiwan Environmental Protection Administration. This study adopted basic Gaussian Plume calculations to estimate the dispersion pattern of PM2.5 released from stationary sources using The American Meteorology Society / Environmental Protection Agency Regulatory Model (AERMOD) software. Concentration of annual and hourly PM2.5 were simulated by combining the sources of permanent emissions in each city with climate and topographic data. These results were then analyzed and depicted in the concentration contour map using Geographic information system (GIS) that were overlaid on the map of the study area. The AERMOD simulated the highest PM2.5 concentrations in Taoyuan and Zhongli districts with the maximum daily average concentration of 65.3 μg/m3 and 10.7 μg/m3 for the annual period that significantly in relating with northeast wind pattern in Taoyuan city, 2008. Meanwhile, in Taichung, the maximum daily average concentration of PM2.5 was 25 μg/m3 and 5.4 μg/m3 in annual period that mostly developed in the industrial area. On the contrary, the maximum daily average concentration of PM2.5 was 55 μg/m3 and 6.8 μg/m3 for the annual period in the southwest Kaohsiung city in 2013. This study observed simulated PM2.5 concentrations were higher than the observations in several locations, including Taoyuan, Zhongli, and Xiaogang districts, indicating the locations and spatial densities of stationary sources had greater effects on air pollutants simulations. Therefore, the health risk assessment for general public in association with ambient air pollution should consider both the simulated and real world measurements.

參考文獻


[1] K. Naddafi, R. Nabizadeh, Z. Soltanianzadeh, M. H. Ehrampoosh, Evaluation of dust fall in the Air of Yazd, 2006.
[2] E.M.-Y. Wu, S.-L. Kuo, A Study on the Use of a Statistical Analysis Model to Monitor Air Pollution Status in an Air Quality Total Quantity Control District, Atmosphere 4(4) (2013) 349.
[3] E. Zainal Abidin, N. Izzati Ghazali, S. Syed Ismail, S. Praveena, I. Rasdi, PM2.5 respiratory health risk and IL-6 levels among workers at a modern bus terminal in Kuala Lumpur, 2014.
[4] X. Querol, A. Alastuey, T. Moreno, M. Viana, S. Castillo, J. Pey, S. Rodríguez, B. Artiñano, P. Salvador, M. Sánchez, Spatial and temporal variations in airborne particulate matter (PM10 and PM2. 5) across Spain 1999–2005, Atmospheric Environment 42(17) (2008) 3964-3979.
[5] R.D. Brook, S. Rajagopalan, C.A. Pope III, J.R. Brook, A. Bhatnagar, A.V. Diez-Roux, F. Holguin, Y. Hong, R.V. Luepker, M.A. Mittleman, Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association, Circulation 121(21) (2010) 2331-2378.

延伸閱讀