透過您的圖書館登入
IP:18.217.8.82
  • 學位論文

流道入口位置及檔板排列與擴大流道路徑對質子交換膜燃料電池性能之影響

Effects of Channel Flow Inlet and Baffle Arrangements and Expanding Paths on the Performance of PEM Fuel Cells

指導教授 : 蔡瑞益

摘要


本文探討不同的流道設計對質子交換模燃料電池性能的影響,藉由利用CFD-RC計算流體力學套裝軟體來進行模擬。首先以棋盤型流道做為基礎模型,改變流道入口位置(中央入口與邊界入口)以及流道檔板排列(去除流道入口檔板與擴大流道路徑)來分析流場內部的質傳現象。並且藉由改變操作參數(陰極入口流速、溫度、壓力)來探討電池的流場變化以及對性能的影響。 模擬結果顯示,在固定操作參數下(陰極入口流速為2.86m/s、溫度為70˚C、壓力為2atm),擴大流道路徑-邊界入口模組的質量傳遞效果比去除流道入口檔板-中央入口、去除流道入口檔板-邊界入口、擴大流道路徑-中央入口還要好。在電池性能方面擴大流道路徑-邊界入口模組雖然比去除入口檔板-邊界入口稍微差一些,但在壓力降的表現上卻比後者優異。在模擬結果中也可得知提高陰極入口流速與壓力可改善燃料電池的性能,而陰極入口溫度提高時會降低電池性能。

並列摘要


This article discusses and simulates the effect of various channel designs on the performance of proton exchange membrane fuel cells (PEMFCs) by using computational fluid dynamics software (CFD-RC). At first, consider a grid flow channel as the basic model. To analyze the phenomenon of mass transportation of internal flow field by changing the location of channel inlet (central inlet and side inlet) and the arrangement of baffles (removal of the inlet baffles and expanding flow paths). To study the variation of flow-field and performance on PEMFC by changing the operating conditions (the velocity, temperature, and pressure of cathode inlet). The simulation results show that the mass transportation performance of sparse-side inlet channel is batter than noninletbaffle-central inlet channel, noninletbaffle-side inlet channel, and sparse-central inlet channel for stationary condition (velocity is 2.86m/s, temperature is 70˚C, and pressure is 2atm on cathode inlet.). Although the performance of sparse-side inlet channel is slightly worse than noninletbaffle-side inlet channel, the phenomenon in pressure drop of sparse-side inlet channel is batter than noninletbaffle-side inlet channel. The results also indicate that the performance increases when the velocity and the pressure of cathode inlet increase on PEMFC. The performance reduces when the temperature of cathode inlet increases on PEMFC.

參考文獻


[4] CFD-ACE(U), CFD Research Corporation, Alabama, USA, 2003.
[5] S. Shimpalee, S. Greenway, J.W. Van Zee, “The impact of channel path length on PEMFC flow-field design”, J. Power Sources, vol.160,pp.398-406, 2006.
[6] Ronald K.A.M. Mallant, “PEMFC systems:the need for high temperature polymers as a consequence of PEMFC water and heat management”, J. Power Sources, vol.118, pp.424–429, 2003.
[7] Dewan Hasan Ahmed, Hyung Jin Sung, “Effects of channel geometrical configuration and shoulder width on PEMFC performance at high current density”, J. Power Sources, vol.162, pp.327-339, 2006.
[8] Young-Gi Yoon, Won-Yong Lee, Gu-Gon Park, Tae-Hyun Yang, Chang-Soo Kim“Effects of channel and rib widths of flow field plates on the performance of a PEMFC”, Int. J. Hydrogen Energy, vol.30, pp.1363-1366, 2005.

延伸閱讀