透過您的圖書館登入
IP:18.118.29.224
  • 學位論文

應用核磁共振技術觀察雙馬來亞醯胺和巴比妥酸在甲基砒咯烷酮溶劑下中的合成反應以及調控其反應產物

NMR Study on the Synthesis and Optimization of BTA and BMI in solvent NMP

指導教授 : 賈緒威

摘要


近年來鋰離子電池的快速發展,已經廣泛的應用在許多電子設備上,像是手機、筆記型電腦、電動機車和電動汽車。但電池爆炸的事件卻是時有所聞,所以對於年產量超過50億顆的鋰離子電池來說,解決安全性的問題將是當務之急。 鋰離子電池的安全性改善,主要可以分為電子設計、機械設計和材料設計,而本篇主要研究的是材料設計中的安全添加劑,雙馬來亞醯胺 (4,4’-Bismaleimidodi-phenylmethane,以下簡稱BMI) 與巴比妥酸 (Barbituric Acid,以下簡稱BTA) 在以甲基吡咯烷酮 (N-Methyl-2-pyrrolidone,以下簡稱NMP) 為溶劑時進行聚合反應的高分子化過程,並運用核磁共振脈衝程序觀察其中間物與產物,以期推測其反應機制、化學熱力學與動力學行為。 運用1H、13C、15N、Diffusion、DEPTQ、1D-NOE、COSY、HSQC ( 1H-13C,1H-15N )、HMBC ( 1H-13C,1H-15N )等相關的脈衝程序在定性上將起始物BMI、BTA、PMI以及溶劑NMP做結構上的鑑定以確認樣品是否正確。並利用一維氫譜測量出各成分訊號的積分比例來推測 BMI-BTA polymer在聚合反應時產物量的消長,以期推測此反應在化學動力學上的行為以及可能的反應機制。定量的核磁共振資訊,同時提供了探討BMI-BTA polymer反應活性之比較。並且規劃BMI與BTA在不同濃度、比例、溫度與時間等不同反應條件下合成出高分子聚合物的產物,以探討不同條件對於反應在動力學上行為的多樣性,以利後續調配產部比例時有完整的參考依據。 而又藉由實驗發現BMI在NMP溶劑下會進行 homopolymerization reaction 與 BMI-BTA polymer合成的 Michael addition reaction競爭,所以設計出一系列優化方法來避免BMI的 homopolymerization reaction ,而在藉由不同的反應條件來增加不同產物的專一性。 在文獻(1)中提到雙馬來亞醯胺可能進行之反應機制有單體聚合反應(homopolymerization reaction)、麥可加成反應 (Michael addition reaction)、開環反應 (ring-opening aminolysis reaction)、酮基自由基反應 (ketone radical reaction);本篇利用核磁共振技術佐以其他配合之測量技術對BMI-BTA聚合物進行分子結構鑑定,進而推導可能的反應機制,如此製程得以改進,以期未來針對BMI-BTA聚合反應做改質、微觀調控,並應用在不同領域。

並列摘要


In recent years the rapid development of lithium-ion batteries, already widely used in many electronic devices such as cell phones, notebook computers, motor vehicles and electric vehicles. Battery explosion events time to time, for the annual output of over 5 billion lithium-ion battery solutions to security issues is a priority. Lithium-ion battery safety improvement can be divided into the electronic design, mechanical design and material design, but this research is the safety of additives in the material design, 4,4 '-Bismaleimidodi-phenylmethane, hereinafter referred to as BMI and Barbituric Acid, hereinafter referred to as BTA in the N-Methyl-2-pyrrolidone hereinafter referred to as NMP as solvent, the process of polymerization of the polymer and the use of NMR pulse sequences to observe the intermediate material and product, in order to speculate the reaction mechanism of chemical thermodynamics and kinetics behavior. Operation, first we use 1H、13C、15N、Diffusion、DEPTQ、1D-NOE、COSY、HSQC (1H-15N ,1H-13C )、HMBC (1H-15N ,1H-13C )and other pulse sequences are qualitatively will starting material, BMI, the BTA and the solvent NMP to do the identification of samples to confirm the correct structure. Signal area is proportional to the number of spin nuclei in the sample, we use one-dimensional NMR spectra measured integral ratio of each component signal to speculate BMI-BTA polymer in the polymerization product of the amount of growth and decline, in order to speculate that this reaction behavior in chemical kinetics and the possible reaction mechanism. Quantitative NMR information, while providing discussed BMI-BTA polymer reaction Comparison of the activity. And planning BMI and BTA product of the polymers synthesized in different concentrations, the ratio of temperature and time under different reaction conditions, to explore the diversity of the different conditions for the reaction in the kinetic behavior, capacity to facilitate follow-up deployment of the Ministry of proportion when there is a complete reference. And BMI homopolymerization reaction BMI-BTA of polymer synthesis Michael addition reaction of competition in the NMP solvent, so to design a series of optimization methods to avoid the homopolymerization reaction of BMI via different reactions found by experiment conditions to increase the specificity of the different products. Mentioned in the previous literature that the reaction mechanism of 4,4 '-Bismaleimidodi-phenylmethane homopolymerization reaction, Michael addition reaction, ring-opening aminolysis reaction, the ketone radical reaction ; this use of nuclear magnetic resonance measurement techniques accompanied by other co-ordination of BMI-BTA polymer molecular structure identification, and thus deduced the possible reaction mechanism, so that the process was improved with a view to the future of the polymerization reaction to do the modification for the BMI-BTA, the micro-regulation and applications in different areas.

並列關鍵字

NMR NMP BMI BTA

參考文獻


[6]. S.-F. Oguz, I. Dogan, Tetrahedron: Asymmetry. 14 (2003) 1857
[7]. Ray Freeman, Magnetic Resonance in Chemistry and Medicine, 2003
[8]. Metin Balci, Basic 1H- and 13C-NMR Spectroscopy, 2004
[9]. Andrew E. Derome, Modern NMR Techniques for Chemistry Research, 1987
[11]. Joseph B. Lambert, Eugene P. Mazzola, Nuclear Magnetic Resonance Spectroscopy, 2004

被引用紀錄


鍾欣芮(2015)。商用自身終止超分歧寡聚物合成優化之核磁共振研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201500931
Wei, J. T. (2014). 應用核磁共振技術探討環境調控鏈/環狀1,3-二羰基互變異構體之性質以及其與馬來亞醯胺的反應機制與速率 [master's thesis, Chung Yuan Christian University]. Airiti Library. https://doi.org/10.6840/cycu201400785
葉姵君(2013)。應用核磁共振技術探討順反丁烯二酸之 動力學和熱力學行為/雙馬來醯亞胺之氫核 化學位移值和自聚合反應〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201300812

延伸閱讀