近年來鋰離子電池的快速發展,已經廣泛的應用在許多電子設備上,例如說手機、筆記型電腦、電動機車和電動汽車。但電池爆炸的事件卻是時有所聞,所以對於年產量超過50億顆的鋰離子電池來說,解決安全性的問題將是當務之急。 鋰離子電池的安全性改善,主要可以分為電子設計、機械設計和材料設計,材料設計中的安全添加劑為雙馬來亞醯胺 (4,4’-Bismaleimidodi-phenylmethane,以下簡稱BMI) 與巴比妥酸 (Barbituric Acid,以下簡稱 BTA) 進行聚合反應的高分子。而本篇主要研究的是研究馬來亞醯胺 (Phenylmaleimide) 和具有 β-dicarbonyl compounds (Acetylacetone 與 Dimedone) 進行反應後的結構探討,其中有 Michael Addition 以及 Polymerization[1]。在一開始先分析具有 β-dicarbonyl compounds 的特性。再來進行反應時,藉由改變溶劑 (CHCl3、DMF、DMSO 及 NMP) 以及進行中實驗的溫度 (50°C及90°C),探討溶劑效應及溫度效應所帶來的影響。傳統上高分子合成注重其功能及表現,而對於其微結構並無深入探討,本篇利用核磁共振技術對聚合物進行分子結構鑑定,並經由改變反應物本身,溶劑及溫度做微觀調控以得到之產物,以期未來針對此聚合反應做改質、微觀調控,並應用在不同領域。 運用 1H、13C、DEPTQ、COSY、HSQC、HMBC等相關的脈衝程序在定性上將起始物 PMI、Acetylacetone、Dimedone 結構上的鑑定以確認樣品是否正確。並利用一維氫譜測量出各成分訊號的積分比例來推測聚合物在聚合反應時產物量的消長,以期推測此反應在化學動力學上的行為以及可能的反應機制。定量的核磁共振資訊,同時提供了探討反應物的反應活性之比較。並且規劃 BMI 與 β-dicarbonyl compounds 在不同溶劑、溫度與時間等不同反應條件下合成出高分子聚合物的產物,以探討不同條件對於反應在動力學上行為的多樣性,以利後續調配產品比例時有完整的參考依據。 本篇利用核磁共振技術佐以其他配合之測量技術對 BMI-β-dicarbonyl compounds 聚合物進行分子結構鑑定,進而推導可能的反應機制,如此製程得以改進,影響可提供在 BMI-BTA 在不同環境下之反應機制及產物分析。
In recent years the rapid development of lithium-ion batteries have been widely used in many electronic devices, such as mobile phones, notebook computers, motor vehicles and electric cars. But the explosion of the battery when the event is heard, so the annual production capacity of more than 5 billion lithium ion batteries speaking, to resolve the security issues will be a priority. Improve safety lithium ion batteries, can be divided into electronic design, mechanical design and materials design, materials, design safety of additives for the BMI (4,4'-Bismaleimidodi-phenylmethane) and BTA (Barbituric Acid) conducting polymer polymerization. The main study of this research is to investigate the structure of PMI (Phenylmaleimide) and has a β-dicarbonyl compounds (Acetylacetone and Dimedone) carried out after the reaction, which Michael Addition and Polymerization[1]. In the beginning of the first analysis with β-dicarbonyl compounds characteristics. Then,on synthesis reaction by changing the solvent (CHCl3, DMF, DMSO and NMP) as well as the experimental temperature (50 ° C and 90 ° C), investigate the solvent effects and temperature effects brought about. Traditionally focused on polymer synthesis and performance of its functions, and there is no depth to its micro-structure of this polymer using NMR techniques to carry out the molecular structure identification, and by changing the reaction itself, solvents and temperature do to get the macro-control the product, in order not to do for this polymerization modified micro-control, and applied in different fields. Using 1H, 13C, DEPTQ, COSY, HSQC, HMBC and other related procedures identified in the qualitative pulse will be starting from PMI, Acetylacetone, Dimedone structure to confirm whether the sample is correct. And use the one-dimensional NMR measurements of signal points of each component in proportion to speculate that the polymer during polymerization reaction product volume growth and decline, in order to speculate on the chemical reaction kinetics behavior and the possible reaction mechanisms. NMR given the amount of information at the same time provides investigate the comparative reactivity of reactants. And planning BMI and β-dicarbonyl compounds in inferior different solvent, temperature and time different reaction conditions for the synthesis of the product polymer, in order to explore the different conditions for the reaction kinetics on the diversity of behavior in order to interest the subsequent deployment of a complete product based on ratios such reference. This technique using magnetic resonance measurements accompanied by other techniques with the BMI-β-dicarbonyl compounds conducting polymer molecular structure identification, and then derive the possible reaction mechanism, so the process can be improved, the impact of the BMI-BTA available in different environments the reaction mechanism and product analysis.