透過您的圖書館登入
IP:3.144.230.82
  • 學位論文

利用理論計算探討以硼、氮石墨烯支撐的鉑金屬團簇之儲氫能力

Theoretical calculations of hydrogen storage on platinum clusters with boron and nitrogen doped graphene supportings

指導教授 : 陳欣聰

摘要


本篇論文主要是利用理論計算的方法來研究硼、氮石墨烯支撐的鉑金屬團簇之儲氫能力。經由摻雜硼、氮石墨烯的方法來增加金屬團簇在石墨烯表面之穩定度以及增加其儲氫效果。透過密度泛函理論(DFT)原理計算石墨烯基材以及鉑金屬團簇的結構優化,測試Pt4 團簇與表面鍵結時的鍵結能力。接著進行儲氫吸附效果的探討,在1~8組的氫氣吸附當中,吸附能力經由硼與氮摻雜的介入而增加儲存氫氣的效果,隨著氫氣的數量越多吸附能力也隨之減弱,由化學吸附變為物理吸附。接著利用分子動力學模擬的方法在室溫(300 K)時,討論氫氣吸附在金屬團簇時的運動情形以及在氫氣由化學吸附方式轉為物理吸附時之研究。透過電荷密度差異(charge density difference)與投影態密度圖(PDOS)的方式來證實Pt4 團簇在石墨烯與氫氣吸附以及氫氣由化學吸附開始轉變為物理吸附時所看到的現象。最後,再次利用分子動力學模擬來研究美國能源局(DOE)所給定合適的儲氫範圍在200, 300, 400 K環境,氫氣透過不同溫度條件的控制下的運動情形。

關鍵字

石墨烯 鉑團簇 儲氫 硼摻雜 氮摻雜

並列摘要


First principles calculations were carried out to investigate the binding energies between Pt4 cluster and pristine, boron-, and nitrogen- doped graphene sheets. Among these different sheets, boron doped graphene could increase stability of Pt4 cluster due to the largest binding energy. We also used the Molecule Dynamics (MD) simulation to test the stability of Pt4 cluster, and found the Pt4 cluster would desorb on pristine and N-doped graphene sheets, but still adsorb on the B-doped graphene sheet under the room temperature (300 K). In addition, the Pt4 cluster on B-doped graphene sheet could exhibit largest hydrogen storage capacity (store 7H2) with the average H2 adsorption energy of -0.73 eV. The electronic analysis by using charge density difference (between Pt4 clusters and B-doped graphene) and projection density of states (PDOS) also showed the stronger interaction between Pt4 cluster and B-doped graphene than that on pristine and N-doped graphene couterparts.

參考文獻


1. Badwal, S. P.; Giddey, S. S.; Munnings, C.; Bhatt, A. I.; Hollenkamp, A. F., Emerging electrochemical energy conversion and storage technologies. Front Chem 2014, 2 (79), 79.
2. Zuo, Z. J.; Gao, X. Y.; Han, P. D.; Liu, S. Z.; Huang, W., Density Functional Theory (DFT) and Kinetic Monte Carlo (KMC) Study of the Reaction Mechanism of Hydrogen Production from Methanol on ZnCu(111). J Phys Chem C 2016, 120 (48), 27500-27508.
3. Kaur, K.; Singh, C. V., Amorphous TiO2 as a Photocatalyst for Hydrogen Production: A DFT Study of Structural and Electronic Properties. Energy Procedia 2012, 29, 291-299.
5. Mashoff, T.; Convertino, D.; Miseikis, V.; Coletti, C.; Piazza, V.; Tozzini, V.; Beltram, F.; Heun, S., Increasing the active surface of titanium islands on graphene by nitrogen sputtering. Applied Physics Letters 2015, 106 (8), 083901.
6. Zhou, S.; Liu, X.; Yang, K.; Zou, H., Study of H2 physical adsorption in single-walled carbon nanotube array. AIP Advances 2013, 3 (8), 082119.

延伸閱讀