透過您的圖書館登入
IP:3.145.116.193
  • 學位論文

以SU-8光阻製作之方型微流道內毛細填充現象研究

Capillary Filling in Rectangular Microchannels Fabricated with SU-8 Photoresist

指導教授 : 趙修武
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


微機電系統是近年來發展迅速的新興科技研發領域,隨著半導體科技業的蓬勃發展,微機電技術應用於微流體領域相當廣泛,如微混合器、微幫浦、微溝槽、生物晶片及微型燃料電池,均是微流道傳輸現象的應用。因此在微電子及分子生物領域的快速發展下,侷限在微小空間內的流力特性與熱傳現象乃是值得我們探討的地方,藉由研究在微流道中的流體傳輸現象對相關產業應用的發展將有相當助益。 本文探討方型微流道內以表面張力做為驅動力的毛細充填過程,藉由理論分析與實驗量測的方法相互比對,了解液體於方型微管道內表面張力流動中,流體傳輸界面的毛細填充現象。本文所使用的方型微流道以SU-8光阻厚膜光阻在矽基材上製作並覆以PDMS上蓋,微流道的高度固定在100μm,寬度分別為50、75μm、100μm、150μm,分別使用潤滑油、橄欖油、洗碗精和矽油為工作流體,以高速攝影機拍攝流體於流道內之填充過程。依據描述該現象的理論關係式,發現方型微流道內表面張力流毛細填充現象與動態接觸角α、歐氏數Oh與無因次化參數f Re有關,藉由實驗量測的方式,發現動態接觸角為歐氏數Oh及f Re值的函數。

關鍵字

Oh值 方型微流道 毛細填充 接觸角 fRe值

並列摘要


This paper investigates capillary filling in rectangular microchannels which is driven by surface tension. We compare our new theoretical analysis with our experimental measurements to understand the interfacial phenomena of capillary filling in rectangular microchannels. The rectangular microchannels are fabricated with thick film SU-8 photoresist on silicon substrates, and the microchannels heights are all 500μm, and the microchannels are 50μm, 75μm, 100μm, and 150μm wide. We used lubrication oil, olive oil, cleanser, and silicon oil, to observe capillary filling with the high speed CCD camera. Capillary filling in rectangular microchannels which is found to be related to the dynamic contact angle, Ohnesorge number, Oh, and dimensionless parameter . Our experimental measurements reified this new theoretical model of describing the capillary filling behavior. The dynamic contact angle depends on Oh and f Re, the capillary filling distance scales with the square of capillary filling time.

參考文獻


1. X. F. Peng and G. P. Peterson, “Convective Heat Transfer and Flow Friction for Water Flow in Micro channel Structures,” Int. J. Heat Mass Transfer, Vol. 39, No.12, pp. 2599-2608, 1996.
4. A. Blum, T. Duvdevani, M. Philosoph, N. Rudoy and E. Peled, “Water-Neutral Micro Direct-Methanol Fuel Cell(DMFC) for Portable Applications,” J. Power Sources, Vol. 5994, pp. 1-4, 2003.
5. M. K. Schwiebert and W. H. Lenog, “Underfill flow as Viscous Flow between Parallel Plate Driven by Capillary Action,” IEEE Tran. Comp. Packing Manu. Tech. Part C, Vol. 19, No.2, pp. 133-137, 1996.
6. N. G. Ni, M. H. Gordom, W. F. Schmidt and A. Muyshondt, “A Experimental and Numerical Study of Underfill Encapsulation of Flip-Chip Using Conductive Epoxy Polymer Bumps,” 47th IEEE Electronic Comp. Tech. Conf., pp. 859-865, 1997.
7. L. J. Yang, T. J. Yao and Y. C. Tai, “The Marching Velocity of the Capillary Meniscus in Microchannels,” J. Micromech. Microeng., Vol. 14, pp. 220-225, 2004.

被引用紀錄


林帝宇(2015)。以微流道進行三維培養人類乳癌細胞及其在抗癌藥物的篩選應用〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/CYCU.2015.00077
蕭湧能(2015)。折繞式光束整形應用於線型雷射加工與積層製造系統之研究〔碩士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-0312201510245548

延伸閱讀