透過您的圖書館登入
IP:18.118.0.91
  • 學位論文

光 伏 能 量 轉 換 系 統 的 啟 發 式 MPPT 設 計

Heuristic Type MPPT Design for Photovoltaic Energy Conversion Systems

指導教授 : 邱 謙 松
本文將於2027/04/07開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


太陽能光伏(PV)面板在實際天氣條件下表現出非線性特性,輸出功率受太陽輻射和溫度變化的影響。這些影響是研究人員在不同天氣條件下追踪全球最大功率點的挑戰。為了在所有天氣條件下從光伏能源系統中找到並提取實際最大功率,需要一種有效的最大功率點跟踪 (MPPT) 控制策略,以使光伏能源系統在其 MPP 上持續運行。 本研究提出了三種 MPPT 方法,以克服上述困難,快速找到 MPP。第一種方法是通過 SFLA 和傳統的增量電導 (IC) 方法相結合的多模塊部分遮光光伏 (PV) 能源系統的混合 Shuffled Frog Leaping Algorithm (SFLA) 設計。 SFLA 用於跟踪全局電源區域,可以避免本地 MPP 的入侵。為解決大型太陽能係統的問題,高效利用太陽能,本研究提出了一種分佈式多模塊光伏能量轉換系統。 第二個是一種新穎的基於短距離運行算法 (SDRA) 的 MPPT 策略,用於部分遮光條件下的光伏能源系統。該方法來源於模擬(模仿)田徑中的短跑比賽,跟踪光伏能源系統的最大功率點,從而準確有效地實現全局MPP搜索。實施了一個典型的獨立光伏能量轉換系統構建模型來評估 SDRA 方法的效率。此外,還部署了一個實驗模型來證明SDRA方法在真實環境中的有用性。 第三種方法是一種新穎的基於賽馬算法 (HRA) 的光伏能量轉換系統 MPPT 策略。通過初始賽馬的佈置,該方案非常有效地避免了光伏能源系統在部分遮光條件下運行時陷入局部電力區域。隨著低功率位置的消除以及良好功率位置的更新,所提出的控制方法迅速實現了全局MPP。 因此,SDRA、HRA 和混合 SFLA 方法具有較高的準確性並且易於實施。與 P&O、PSO 和 GWA MPPT 方法的比較將展示在快速收斂速度和零振盪方面的關鍵優勢。

並列摘要


Solar photovoltaic (PV) panels exhibit non-linear characteristics under actual weather conditions, and the output power is affected by variations in solar radiation and temperature. These influences are the challenges for researchers in tracking the global maximum power point under different weather conditions. To find and extract the actual maximum power from the PV energy system in all weather conditions, an efficient maximum power point tracking (MPPT) control strategy is needed to continuously operate the PV energy system at its MPP. The three MPPT methods are proposed in this research to overcome the above difficulties and quickly find the MPP. The first method is a hybrid Shuffled Frog Leaping Algorithm (SFLA) design for multi-module partial shading photovoltaic (PV) energy systems by a combination of the SFLA and the traditional Incremental Conductance (IC) method. The SFLA is used to track the global power region, which can avoid the local MPPs intrusion. To solve the problem of a larger solar energy system and to efficiently use solar energy, a distributed multi-module PV energy conversion system is proposed in this research. The second one is a novel Short-Distance Running Algorithm (SDRA) based MPPT strategy for PV energy systems under partial shading conditions. This method comes from simulating (mimicking) of a short-distance running race in athletics to track maximum power point from PV energy systems to achieve the global MPP searching accurately and effectively. A typical model of the construction of the stand-alone PV energy conversion system is implemented to evaluate the efficiency of the SDRA method. In addition, an experimental model is also deployed to prove the usefulness of the SDRA method in the real environment. The third method is a novel Horse Racing Algorithm (HRA) based MPPT strategy for PV energy conversion systems. With the arrangement of the initial racehorses, the solution is very effective to avoid falling into the local power areas when the PV energy system is operated under partial shading conditions. With the elimination of low power locations along with updating of good power locations, the proposed control method has quickly achieved the global MPP. As a result, the SDRA, HRA, hybrid SFLA methods have high accuracy and are easy implementation. Comparison with P&O, PSO, and GWA MPPT methods will demonstrate the key advantages in terms of fast convergence speed and zero oscillation.

參考文獻


[1] R. Xu, K. Ni, Y. Hu, J. Si, H. Wen, and D. Yu, "Analysis of the optimum tilt angle for a soiled PV panel," Energy Conversion and Management, vol. 148, pp. 100-109, 2017, doi: 10.1016/j.enconman.2017.05.058.
[2] R. Conceição, H. G. Silva, L. Fialho, F. M. Lopes, and M. Collares-Pereira, "PV system design with the effect of soiling on the optimum tilt angle," Renewable Energy, vol. 133, pp. 787-796, 2019, doi: 10.1016/j.renene.2018.10.080.
[3] M. A. A. Mamun, M. M. Islam, M. Hasanuzzaman, and J. Selvaraj, "Effect of tilt angle on the performance and electrical parameters of a PV module: Comparative indoor and outdoor experimental investigation," Energy and Built Environment, 2021, doi: 10.1016/j.enbenv.2021.02.001.
[4] V. Kamala Devi, K. Premkumar, A. Bisharathu Beevi, and S. Ramaiyer, "A modified Perturb & Observe MPPT technique to tackle steady state and rapidly varying atmospheric conditions," Solar Energy, vol. 157, pp. 419-426, 2017, doi: https://doi.org/10.1016/j.solener.2017.08.059.
[5] M. Seyedmahmoudian, T. K. Soon, B. Horan, A. Ghandhari, S. Mekhilef, and A. Stojcevski, "New ARMO-based MPPT Technique to Minimize Tracking Time and Fluctuation at Output of PV Systems under Rapidly Changing Shading Conditions," IEEE Transactions on Industrial Informatics, pp. 1-1, 2019, doi: 10.1109/tii.2019.2895066.

延伸閱讀