透過您的圖書館登入
IP:13.58.244.216
  • 學位論文

合成熱穩定型雙離子共聚物以製備生物惰性聚偏二氟乙烯微濾膜之研究

Study on Synthesis of Thermostable Zwitterionic Copolymer to Prepare Bioinert Poly(vinylidene difluoride) Microfiltration Membrane

指導教授 : 張雍
本文將於2027/07/25開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


高度生物相容性為發展先進醫材與進階醫療器材的重要需求功能之ㄧ,隨著近年來高分子材料的快速發展,拓展新應用方向也扮演研發功能性醫材的關鍵角色。隨著日益增長的慢性疾病與病毒疫情帶來的影響,發展用於注射液過濾裝置的微過濾薄膜系統也逐漸受到重視。本研究擬探討的問題為如何提高微過濾薄膜系統抵抗生物分子沾黏的性質,同時也需克服經高溫濕式滅菌程序處理後,膜材各項性質的穩定度。本研究擬設計一新型雙離子高分子,合成製備聚(4-乙烯基吡啶丙基磺基甜菜鹼)來強化高分子的耐熱性質,並導入聚(乙二醇單甲醚甲基丙烯酸酯)與聚(苯乙烯)分子鏈段來提升與泛用型濾膜材料聚偏二氟乙烯(poly(vinylidene difluoride), PVDF)的相容性。在PVDF微過濾薄膜系統的製備方面,採用非溶劑誘導相轉換法來控制薄膜的雙連續孔洞結構,並建立相圖來分析薄膜成形的可能機制。由於薄膜表面對於水分子作用所產生的水合現象與其生物惰性有重要的關聯性,因此本研究導入水氣吸脫附實驗來探討不同含量的雙離子高分子於PVDF薄膜中對於水合性質變化的影響,並進一步建立分析模型與關聯性指標。在薄膜物化性質分析方面,採用場發射掃描式電子顯微鏡、X射線光電子能譜儀、傅立葉轉換紅外線光譜儀、原子力顯微鏡、拉力機、與表面界達電位儀對於所製備的膜材進行定性檢測與量化分析。本研究的重要成果歸納如下:(1) 透過導入聚(乙二醇單甲醚甲基丙烯酸酯)分子鏈段成功解決雙離子共聚物之溶解度問題; (2) 成功合成出聚(苯乙烯)-r-聚(乙二醇單甲醚甲基丙烯酸酯)-r-聚(4-乙烯基吡啶丙基磺基甜菜鹼)的雙離子共聚物,並可製備出可抵抗121℃濕熱滅菌處理的生物惰性PVDF微過濾薄膜,實現濾膜具熱穩定性功能; (3) 新型雙離子共聚物可展現高度水合性質,在37℃與相對溼度90%下能保有高於自身重量48%的水合含量; (4) 在含雙離子共聚物 5wt%的最佳混摻比例,PVDF膜面可抵抗大於98%的細菌(大腸桿菌與嗜麥芽窄食單胞菌)貼附量,展現高度抗細菌污垢沾黏的功能; (5) 此種薄膜經比較不具熱穩定性之聚(苯乙烯)-r-聚(乙二醇單甲醚甲基丙烯酸酯)-r-聚(4-乙烯基吡啶丙基磺基甜菜鹼)雙離子共聚物薄膜後發現其水合性質與高溫滅菌前後的抗細菌貼附效果都更加顯著; (6) 將薄膜置於去離子水及磷酸鹽緩衝溶液環境中歷時一個月仍能展現其優異的改質穩定性。

並列摘要


Biocompatibility is one of the important functions that required for the development of advanced biomaterials and medical equipment. Recently, the rapid development of outstanding polymer materials and expanding various applications have also played a key role in the development of functional biomaterials. The development of the microfiltration membrane systems for the injection devices has gradually attracted attention with an increasing impact of chronic diseases and the virus epidemics. The problem to be discussed in this study is how to improve the resistance of the bio-foulant adhesion using the microfiltration membrane system and also necessary to overcome the stability of various properties of the prepared membranes after being treated by the high-temperature and wet sterilization procedures. In this study, an innovative zwitterionic random copolymer was designed, and the existence of the 4-vinylpyridine propylsulfobetaine, 4VPPS) was used to enhance thermal stability of the copolymer as well as the membranes. Poly(ethylene glycol) methyl ether methacrylate (PEGMA) and poly(styrene) chain segments were introduced to improve the material compatibility with polyvinylidene fluoride (PVDF). The prepared PVDF microfiltration membrane via non-solvent induced phase separation method was used to control the bi-continuous membrane structure, and the ternary phase diagram was analyzed to confirm the possible mechanism of membrane formation. The water vapor adsorption and desorption experiments were introduced to investigate the effect of the different contents of zwitterionic copolymer on the PVDF membranes. In the analysis of the physical and chemical properties of the membranes, the prepared membranes were successfully characterized qualitatively and quantitatively. The important results of this study were summarized as follows: (1) The solubility problem of the zwitterionic copolymer was successfully solved by the addition of PEGMA segments; (2) Zwitterionic PVDF microfiltration membranes was successfully synthesized, and effectively applicable for bio-inert that could resist 121℃ steam sterilization treatment to realize the thermal stability of the membraneproperties; (3) The innovative zwitterionic copolymer exhibited highly hydratable properties, retaining 48% hydration content at 37°C and 90% relative humidity; (4) Finally, 5 wt% zwitterionic copolymer (M5.0) resisted more than 97% attachment of bacteria (Escherichia coli and Stenotrophomonas maltophilia), showed high degree of resistance to the bacterial fouling; (6) M5.0 membrane exhibited excellent stability after being immersed into deionized water and Phosphate buffered saline for one month.

參考文獻


1. Medical Device Manufacturers Market Size from: https://www.grandviewresearch.com/industry-analysis/us-medical-device-manufacturers-market.
2. Ogbonna, C. N.; Nwoba, E. G., Bio-based flocculants for sustainable harvesting of microalgae for biofuel production. A review. Renew. Sust. Energ. Rev. 2021, 139, 16.
3. Rashid, T.; Sher, F.; Hazafa, A.; Hashmi, R. Q.; Zafar, A.; Rasheed, T.; Hussain, S., Design and feasibility study of novel paraboloid graphite based microbial fuel cell for bioelectrogenesis and pharmaceutical wastewater treatment. J. Environ. Chem. Eng. 2021, 9 (1), 8.
4. Fahimirad, S.; Fahimirad, Z.; Sillanpaa, M., Efficient removal of water bacteria and viruses using electrospun nanofibers. Sci. Total Environ. 2021, 751, 18.
5. Ghosal, K.; Agatemor, C.; Spitalsky, Z.; Thomas, S.; Kny, E., Electrospinning tissue engineering and wound dressing scaffolds from polymer-titanium dioxide nanocomposites. Chemical Engineering Journal 2019, 358, 1262-1278.

延伸閱讀