透過您的圖書館登入
IP:3.14.253.221
  • 學位論文

氧化鋁鋅/碳氣凝膠超電容電極材料之製作及研究

Synthesis and characterization of Aluminum-Doped Zinc Oxide/ carbon aerogel as supercapacitor electrode materials

指導教授 : 許經夌

摘要


近年來,碳氣凝膠開始被廣泛研究,因為具有優異的導電性、高比表面積以及特殊的三維孔洞結構,非常適合作為超電容之電極材料。氧化鋅擁有價格低廉、不具毒性,可抗酸鹼,又易於製作的優勢下,也在近年來被認為是能應用於超電容器上,是具有前景的擬電容材料。 實驗透過溶膠-凝膠法製備碳氣凝膠及氧化鋅,並將氧化鋅成長於其中,形成複合材料,藉此來幫助提升氧化金屬導電性及穩定性。藉由摻雜不同比例的鋁進入氧化鋅膠體溶液,目的是改善氧化鋅電阻較高的問題。 複合的材料能增加電解液與氧化鋁鋅的接觸機會,使氧化鋁鋅得到更有效的利用,而碳氣凝膠則能降低電子傳導路徑,當電化學反應發生時,電解液與電極介面發生氧化還原,產生法拉第電流,電子能快速通過氧化鋁鋅到達碳氣凝膠表面。本研究中鋁的摻雜確實使得碳氣凝膠複合材料的電容值表現提升了36 %,因此希望本研究所製作之材料未來能應用於提升超電容之電容值。

關鍵字

碳氣凝膠 超級電容

並列摘要


Carbon aerogels have been regarded as one of the most suitable supercapacitor electrode materials, which have been widely researched in recent years, owing to their superior electrical conductivity, high specific area, and unique three-dimensional (3D) porous structure. In addition, zinc oxide (ZO) have been viewed as one of the promising supercapacitor electrode materials in recent years, owing to its low cost, none toxicity, chemical stability, and ease of synthesis. However, due to the problem of higher electric transfer resistance of zinc oxide, doped aluminum was added in this study, in hope of increasing its conductivity. In this study, we prepared carbon aerogels through sol-gel method, doped Al into ZnO, and grew ZnO on the surface of carbon aerogels to reduce conductivity and to improve stability. The composite material could increase contact area of electrolyte and aluminum doped zinc oxide (AZO), carbon aerogels would shorten the electric transfer path. When oxidation-reduction reaction between electrolyte and electrode occurred, the electron could quickly transfer to the surface of AZO and carbon aerogels. Therefore, the capacitive performance of the composite rises by 36%. We hope the materials prepared will be able to be applied to improve the capacitive performance in the near future.

並列關鍵字

Carbon aerogel supercapacitor

參考文獻


[1] E.F. Vansant, P. Van Der Voort, K.C. Vrancken, Characterization and chemical modification of the silica surface, Elsevier, 1995.
[2] H.C. Foley, Carbogenic molecular sieves: synthesis, properties and applications, Microporous Materials, 4 (1995) 407-433.
[3] S. Oh, K. Kim, Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors, Chemical Communications, (1999) 2177-2178.
[4] M. Kuno, T. Naka, E. Negishi, H. Matsui, O. Terasaki, R. Ryoo, N. Toyota, Magnetic susceptibility and electrical resistivity of a mesoporous carbon CMK-1, Synthetic metals, (2003) 721-722.
[5] D. Kawashima, T. Aihara, Y. Kobayashi, T. Kyotani, A. Tomita, Preparation of mesoporous carbon from organic polymer/silica nanocomposite, Chemistry of Materials, 12 (2000) 3397-3401.

延伸閱讀