透過您的圖書館登入
IP:18.221.187.121
  • 學位論文

利用化學浴沉積法成長鎂摻雜氧化亞銅薄膜之回火研究

Study on the annealing of Mg-doped Cu2O films prepared by chemical bath deposition

指導教授 : 溫武義

摘要


氧化亞銅(Cu2O)具有直接遷移型能隙,能隙大約為2.1eV,在可見光區吸收係數大,穿透率低等特性,應用在太陽能電池研製上,將可增大太陽能電池對於入射太陽光的吸收波長範圍。 本實驗採用化學浴沉積法(Chemical Bath Deposition; CBD),在銅基板進行摻雜鎂(Mg)之n型氧化亞銅(n-Cu2O:Mg)薄膜製備研究,並且比較不同溫度的回火。藉由掃瞄式電子顯微鏡(Scanning Electron Microscopy;SEM)、X-光繞射儀(X-ray diffraction;XRD)、X射線光電子能譜儀(X-ray Photoelectron Spectroscopy;XPS)、二次離子質譜儀(Secondary Ion Mass Spectrometer;SIMS)、光激發螢光頻譜儀(Photoluminescence,;PL)和熱探針法(Hot probe)去分析薄膜特性。對於不同濃度比例的薄膜作光學特性分析,可看出在1.913eV的波段發光可能為鎂摻雜所造成。於分析也可發現多晶氧化亞銅薄膜所成長的晶粒大小為0.3至2.7μm,厚度約為2μm,電阻率最低為47Ωcm,鎂摻雜氧化亞銅薄膜在熱處理溫度超過300℃後,轉變為p型半導體導電特性。

並列摘要


Cuprous oxide is a direct band-gap semiconductor, energy gap size is 2.1eV with a high absorption coefficient in the visible region. Magnesium (Mg)-doped cuprous oxide (Cu2O:Mg) thin films are fabricated on copper (Cu) substrate by chemical bath deposition (CBD) method. The polycrystalline Cu2O films are annealed in nitrogen at different temperatures.The films are characterized by SEM, XRD, XPS, SIMS, photoluminescence, and hot probe measurement. The optical properties of Cu2O films fabricated from the aqueous solution with various mole ratio of [Mg(NO3)2]/[CuSO4]. The 1.913 eV (648nm) band might be the incorporation of Magnesium in Cu2O and can be an effect of donor-related luminescence for the Mg-doped Cu2O films. It has been found that the grain size of the polycrystalline Cu2O film fabricated is ranging from 0.3 to 2.7μm, the thickness is defined as about 2μm. The lowest resistivity is 47Ωcm in [Mg/Cu] = 0.16. Then, the n-type Cu2O films transfer to p-type after being treated annealing temperatures of 300℃ or higher. In other words, the result of hot probe is the same.

參考文獻


[1] C.A. Dimitriadis, L. Papadimitriou, N.A. Economou, J. Mater. Sci. Lett., 2, 691 (1983).
[2] T. Minami, Y. Nishi, and T. Miyata, Appl. Phys. Express, 6, 044101 (2013).
[3] Rakhshani A E, Solid-State Electron, 29, 7 (1986).
[4] R. J. Iwanowski and D. Trivich, Phys. Status Solidi A, 95, 735 (2006).
[8] T. Minami, Y. Nishi, T. Miyata, J.-i. Nomoto, Appl. Phys. Express, 4, 062301 (2011).

延伸閱讀