透過您的圖書館登入
IP:3.133.121.160
  • 學位論文

以微波輔助溶液相成長3-氨基丙基三乙氧基矽氧烷與二甲基二氯矽烷表面處理之二氧化矽奈米顆粒混成薄膜為感測層之超靈敏多巴胺感測器

Ultra-sensitive dopamine biosensor using microwave-assisted solution phase deposition of a 3-aminopropyltriethoxysilane and dimethyldichlorosilane-treated silica nanoparticle mixture as the sensing membrane

指導教授 : 林錦正

摘要


本論文主要研究利用液相沉積法(Solution Phase Deposition,SPD)與微波輔助溶液相沉積法(Microwave-assisted solution phase deposition, MW-SPD)成長大面積3-氨基丙基三乙氧基矽氧烷與二甲基二氯矽烷表面處理之二氧化矽奈米顆粒混成感測膜(γ-APTES +NPs),批次製作超高靈敏度多晶矽線多巴胺感測器。我們比較在γ-APTES +NPs乙醇溶液中使用液相沉積法(SPD)與定功率微波輔助沉積法(MW-SPD)成長γ-APTES +NPs的感測薄膜特性,探討利用加熱平板與微波退火處理效應,以及製程前、中、後使用紫外光(Ultraviolet,UV)照射處理對薄膜特性的影響。為了推測二甲基二氯矽烷表面處理之二氧化矽奈米粒子與γ-APTES成功的混成γ-APTES+NPs複合薄膜,我們進行的分析包含橢圓測厚儀(Ellipsometer)量測厚度,動態光散射儀(Dymanic Light Scattering ,DLS)量測γ-APTES混和二氧化矽奈米粒子之粒徑大小,利用顯微拉曼光譜儀(Microscopes Raman Spectrometer)分析光譜。 實驗結果顯示,以微波輔助溶液相沉積法可以大幅降低γ-APTES +NPs薄膜的成長時間。其中單純以室溫溶液相沉積法成長γ-APTES +NPs,最佳的元件特性出現在沉積6小時,但以微波輔助成長最佳的元件特性出現在沉積15分鐘。多巴胺感測濃度可偵測範圍可從1×10-21 M ~ 1×10-3 M改善至1×10-25 M ~ 1×10-3 M,最低的偵測極限達1×10-25 M,最低偵測極限改善達4個數量級。若搭配UV光照射,則微波輔助溶液相沉積製程多巴胺感測濃度的可偵測範圍為1×10-27 M ~ 1×10-3 M,最低偵測極限改善達6個數量級。 薄膜退火處理方面,我們發現利用微波退火處理能大幅改善單純以室溫溶液相沉積法成長之γ-APTES +NPs特性。實驗結果顯示在室溫溶液相沉積法成長6小時之γ-APTES+NPs薄膜經15 分鐘微波退火處理,多巴胺感測濃度可偵測範圍可從1×10-21 M ~ 1×10-3 M改善至1×10-27 M ~ 1×10-3 M,最低的偵測極限達1×10-27 M,最低偵測極限改善達6個數量級。若搭配UV光照射,則微波退火處理製程多巴胺感測濃度的可偵測範圍為1×10-30 M ~ 1×10-3 M,最低偵測極限改善達9個數量級。由拉曼分析不同沉積方式的薄膜結果顯示,只要製程中加了二氧化矽奈米粒子,Si-O-Si吸收?值越大,代表鍵結數變多或越完整;而且只要製程中有照射UV光,Si-O-Si鍵結吸收?值也越大;其中以SPD成長γ-APTES+NPs薄膜再使用微波退火處理與UV光照射,Si-O-Si吸收?值最大。Si-O-Si吸收?值與多巴胺最低偵測極限表現相同趨勢,最低偵測極限濃度越低,吸收?值越大。因為γ-APTES+NPs薄膜厚度在1~3nm,我們合理推論混入的二氧化矽奈米粒子外徑在1~3nm,因此提供感測薄膜超高的表面積/體積比,是元件具備超靈敏之最低偵測極限的主要原因。

並列摘要


In this thesis, solution phase deposition (SPD) and microwave-assisted solution phase deposition (MW-SPD) methods were used for growing the large-area sensing membrane of a 3-aminopropyltriethoxysilane (γ-APTES) and dimethyldichlorosilane (DDS)-treated silica nanoparticles mixture (γ-APTES+NPs) on polysilicon wires in the batch fabrication of dopamine biosensors. We compared the characteristics of the γ-APTES+NPs membrane prepared by SPD and MW-SPD at fixed power using a solution contained mixture of γ-APTES+NPs and C2H5OH. We investigated the hotplate and microwave annealing (MWA) effects on the sensitivity of dopamine detection. The effects of ultraviolet (UV) light exposure at different stages during deposition on the film properties were also studied.. In order to prove the DDS-treated silica nanoparticles were incorporated with γ-APTES during SPD and MW-SPD, we conducted the analyses including ellipsometer, dynamic light scattering (DLS) and micro-Raman spectroscopy. It was found that MW-SPD could reduce the deposition time of γ-APTES+NPs significantly. The best deposition time for SPD at room temperature was 6 hours, but for the MW-SPD was only 15 minutes. The detectable range of the dopamine biosensor using γ-APTES+NPs as sensing membrane could be improved from 1×10-21 M ~ 1×10-3 M to 1×10-25 M ~ 1×10-3 M by MW-SPD process. The lowest detection limit was improved by 4 orders of magnitude. The UV illumination could further improve the biosensor with a detectable range of 1×10-27 M ~ 1×10-3 M. The lowest detection limit for dopamine was improved by 6 orders of magnitude for γ-APTES+NPs with MW-SPD+UV process. As for the microwave annealing processes, we found that the sensitivity of the lowest detection limit for the γ-APTES+NPs prepared by SPD could be significantly improved by the post-deposition of microwave annealing. For γ-APTES+NPs growing by a 6 hour SPD, a 15 minute microwave anneal could improve the detectable range from 1×10-21 M ~10-3 M to 1×10-27 M ~ 1×10-3 M. The lowest detection limit for dopamine was improved by 6 orders of magnitude. The UV illumination after microwave annealing could further improve the biosensor with a detectable range of 1×10-30 M ~ 1×10-3 M. The lowest detection limit for dopamine was improved by 9 orders of magnitude. From the Raman spectra of the membranes, enhanced absorption peaks of Si-O-Si bond were observed in all the films incorporated with silica NPs, especially for γ-APTES+NPs using MW-SPD process. The number of Si-O-Si bonds increased as the NPs incorporated with the γ-APTES. The absorption peaks of Si-O-Si bond were also enhanced for all the films with ultraviolet (UV) light exposure. The γ-APTES+NPs using SPD+MWA+UV process showed the highest absorption peak of Si-O-Si bond. The sensitivity of lowest detection limit increased with the value of absorption peak of Si-O-Si bond. Because the thicknesses of γ-APTES+NPs membranes were in between 1nm and 3nm, it was reasonable to believe that the diameters of the incorporated silica nanoparticles were in the range of 1nm-3nm, resulting in ultra-high surface to volume ratio for the film and ultra-sensitive lowest detection limit for dopamine.

參考文獻


[1]Kenzo Maehashi, Taiji Katsura, Kagan Kerman, Yuzuru Takamura,Kazuhiko Matsumoto, and Eiichi Tamiya (2006) ,Label-Free Protein Biosensor Based on Aptamer-Modified Carbon Nanotube Field-Effect Transistors.
[2]Koji Nishida, Hiroyuki Sakaue, and Takayuki Takahagi (2007) , Immobilization of Gold Nanoparticles on Silanized Substrate for Sensors Based on Localized Surface Plasmon Resonance, e-Journal of Surface Science and Nanotechnology.
[3]P. Bergveld, Development of an ion-sensitive solid-state device for neurophysiological measuremtnts, IEEE Trans. Biomed. Eng. 17, (1970) 70-71.
[4]A. Simon, 1 T. Cohen-Bouhacina, M. C. Port´e, J. P. Aim´e, and C. Baquey. Study of Two Grafting Methods for Obtaining a 3-Aminopropyltriethoxysilane Monolayer on Silica Surface. Journal of Colloid and Interface Science 251, 278–283 (2002)
[5]Ichiro Shimizu,a Akihiro Yoshino,b Hirofumi Okabayashi,b* Etsuo Nishioc andCharmian J. OÏConnord (1996) . Kinetics of interaction of 3-aminopropyltriethoxysilane on a silica gel surface using elemental analysis and di†use reÑectance infrared Fourier transform spectra.

被引用紀錄


陳政宏(2005)。國內職棒運動贊助效益之影響因素: 以二階因素分析探討〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2005.01678
楊俊斌(2011)。兄弟象球團的經營策略分析〔碩士論文,國立臺灣師範大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0021-1610201315263653

延伸閱讀