透過您的圖書館登入
IP:18.117.158.47
  • 學位論文

以聚二甲基矽氧烷表面處理之二氧化矽奈米顆粒混合3-氨基丙基三甲基矽氧烷薄膜漏電特性之研究

Leakage Characteristics of 3-aminopropyltriethoxysilane Sensing Membrane mixed with polydimethylsiloxane-treated hydrophobic fumed silica nanoparticles

指導教授 : 吳幼麟
共同指導教授 : 林錦正
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文旨在利用半導體製程技術,探討以聚二甲基矽氧烷(PDMS)表面處理之二氧化矽奈米顆粒混合3-氨基丙基三甲基矽氧烷(γ-APTES)薄膜漏電特性與薄膜結構及用於生醫檢測時電性干擾的行為;也探討UV光的照射對薄膜進行改質的影響。我們使用旋塗的方式以及經聚焦離子束處理之毛細作用原子力顯微鏡探針(Capillary atomic force microscopy tip, C-AFM tip)塗佈法來製備感測薄膜,並比較其漏電特性的差異與評估在雙多晶矽線同時工作模擬下薄膜漏電特性對不同生醫感測器同時運作時之干擾行為。 由實驗的結果我們可以發現混合PDMS表面處理之SiO2奈米顆粒能有效降低旋塗法與探針塗佈法之γ-APTES薄膜漏電流,UV光的照射會使得旋塗法之?-APTES或?-APTES+NPs薄膜皆發現?-APTES分子重新鍵結形成群聚大顆粒的結構的現象,漏電流隨著顆粒邊界(grain boundry)的形成而增加,然而以探針塗佈法之γ-APTES+NPs薄膜經過UV光照射後,未發現顆粒聚集的現象,從FTIR的分析結果我們相信UV光能夠進一步提供更多的氫氧基,增加γ-APTES薄膜鍵結完整性,進而改善薄膜的漏電流特性以及增加感測薄膜應用於多個感測器同步運作時之抗電性干擾能力。

並列摘要


In the thesis, the membrane characteristics including leakage current, membrane structure and electrical interference for biomedical testing of a mixture of 3-aminopropyltriethoxysilane (γ-APTES) and polydimethylsiloxane (PDMS)-treated hydrophobic fumed silica nanoparticles (NPs) fabricated by using semiconductor processing technique were investigated. The effects of UV irradiation on the membrane characteristics were also studied. The sensing membranes were prepared either by spin-coating or capillary atomic force microscopy (C-AFM) tip-coating method. The leakage characteristics and electrical interference properties of the polysilicon wire biomedical sensors with the two sensing membranes, γ-APTES and γ-APTES+NPs, prepared by C-AFM tip coating were compared. Our results show that adding the PDMS-treated hydrophobic fumed silica nanoparticles into γ-APTES can effectively reduce leakage currents of the membranes prepared by both the spin-coating and C-AFM tip-coating methods. After UV irradiation, both the γ-APTES and γ-APTES+NPs membranes were found to reorganize, forming large grain clusters and enhancing leakage current along the grain boundares. However, the C-AFM tip-coated membrane does not exhibit nanoparticles aggregation after UV irradiation. We believe that UV irradiation can provide more hydroxyl group and increase membrane integrality of γ-APTES. Therefore, leakage current of the membrane can be reduced, thus increasing the electrical interference rejection when multiple sensors were operated simultaneously.

參考文獻


[1] P. Bergveld, Development of an ion-sensitive solid-state device for neurophysiological measuremtnts, IEEE Trans. Biomed. Eng. 17, (1970) 70-71.
[2] F. Patolsky, G. Zheng, C. M Lieber, Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species, Nat. Protocols, 1 (2006) 1711-1724.
[3] P. Y. Hsu, J. J. Lin, Y. L. Wu, W. C. Hung, A.G. Cullis, Ultra-sensitive polysilicon wire glucose sensor using a 3-aminopropyltriethoxysilane and polydimethylsiloxane-treated hydrophobic fumed silica nanoparticle mixture as the sensing membrane, Sensors and Actuators B 142 (2009) 273–279.
[4] J. Hahm, C. M. Lieber, Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors, NANO LETTERS Vol. 4, No. 1 (2004) 51-54.
[5] Y. Chen, X. Wang, S. Erramilli, P. Mohanty, Silicon-based nanoelectronic field-effect pH sensor with local gate control, APPLIED PHYSICS LETTERS 89, (2006) 223512.

延伸閱讀