透過您的圖書館登入
IP:3.141.30.162
  • 學位論文

以電荷幫浦應用於室內光能採集器之設計

A Design of Charge Pump Based Ambient Light Harvester

指導教授 : 許孟烈
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


近年來由於能源過度消耗,加上綠能意識日漸提升,如何從環境中獲得再生能源已成為大家關注的議題。應用於穿戴式產品(Wearable Devices)的太陽能電池通常尺寸不大且輸出功率有限,為了能提供穿戴式產品在室內環境使用時額外的充電功能,本論文提出以電荷幫浦(Charge Pump)應用於室內光能採集器(Ambient Light Harvester)之設計,透過電荷幫浦將小尺寸太陽能電池輸出的低電壓提升至可使用的範圍,在此採集器中也實現最大功率點追蹤(Maximum Power Point Tracking)法,已能有效地轉換低功率的室內光能。 本論文使用TSMC 0.18μm 1P6M CMOS製程實現室內光能採集器,此室內光能採集器之輸入電壓範圍為0.5V~1.3V,輸出電壓範圍為1.43V~3.85V,最大功率追蹤效率可達99%,當輸入功率為1mW,最大轉換效率為81%。

並列摘要


Due to the excessive energy consumption in recent years and the rising consciousness in green energies, the issue of harvesting energy from environment has drawn more and more attention. The solar cell used for wearable devices typically has a small size and limited generating power. In this thesis, a charge pump based ambient light harvester has been proposed as the secondary power source for wearable devices used in indoor environment. The ambient light harvester employs a charge pump technique to boost the low voltage produced by the small size solar cell to a practicable voltage level. The maximum power point tracking function is also implemented in the harvester to efficiently convert the limited power generated from the small size solar cell. This proposed ambient light harvester is implemented with TSMC 0.18μm 1P6M CMOS process. The harvester accepts an input voltage of 0.5V~1.3V, and generates an output voltage of 1.43V~3.85V. The maximum power point tracking efficiency is 99%, and the maximum conversion efficiency is 81% as the input power is 1mW.

參考文獻


[1] 太陽能電池價格及安裝量趨勢, from https://read01.com/Q6do4J.html
[2] 2016~2025年台灣太陽能系統線性成長下的年安裝量, from http://press.trendforce.com.tw/press/20160217-3129.html
[3] 太陽能路燈及太陽能熱水器, from http://pv.energytrend.com.tw/features/20150924-12207.html
[4] T. Esram, and P. L. Chapman, “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques,” IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 439-449, Jun. 2007.
[5] E. Koutroulis, K. Kalaitzakis, and N. C. Voulgaris, “Development of a Microcontroller-Based, Photovoltaic Maximum Power Point Tracking Control System,” IEEE Trans. Power Electron., vol. 16, no. 1, pp. 46-54, Jan. 2001.

延伸閱讀