透過您的圖書館登入
IP:3.140.242.165
  • 學位論文

含可撓性三膦酸酯配體錯合物之合成、結構分析、發光特性與感測行為

Syntheses, Structures, Luminescence Properties, and Sensing Behaviors of Metal Complexes of Flexible Tris-phosphonate Ligand

指導教授 : 吳景雲

摘要


本研究以米歇爾–阿爾布佐夫反應(Michaelis-Arbuzov反應)成功合成出具有可撓性(Flexible)之三膦酸酯有機配體2,4,6-tris(phosphomethyl)mesitylene (H6TPMM),並利用此配體首先與鑭系金屬銪(Eu)和鋱(Tb)經由室溫擴散法合成出錯合物[Eu2(H3TPMM)2(H2O)6]‧10H2O (1)和錯合物[Tb2(H3TPMM)2(H2O)6]‧xH2O (2);此外在混合鑭系金屬參雜不同比例(Eu/Tb = 1:1、1:3、3:1 mmol)之化學性合成與物理性合成部分成功合成出錯合物[EuTb(H3TPMM)2(H2O)6]‧xH2O (3)、[Eu0.5Tb1.5(H3TPMM)2(H2O)6]‧xH2O (4)、[Eu1.5Tb0.5(H3TPMM)2(H2O)6]‧xH2O (5)、Eu/Tb-1:1 (6)、Eu/Tb-1:3 (7)、Eu/Tb-3:1 (8)。在錯合物1中其單晶結構為雙核金屬分子籠型結構,錯合物2經PXRD分析證明與錯合物1為同構錯合物,在化學性合成之錯合物3-5以PXRD證實其結構與錯合物1和2相似,為同構異核錯合物。第二部分則是以三膦酸酯有機配體H6TPMM與有機配體2.2’-(pyridyl)-benzimidazole (2,2’-pbim)與過渡金屬鎘(Cd)及銅(Cu)經由室溫擴散法及水熱法合成出錯合物[Cd2(H4TPMM)2(2,2'-pbim)2(H2O)4]‧2H2O (9)及錯合物[Cu2(H4TPMM)2(2,2'-pbim)2]‧H2O (10),其結構皆為雙核分子籠型結構。 光物理性質探討中,錯合物1和2分別具有紅光特徵及綠光特徵之發光性質,化學性合成與物理性合成之錯合物3-8在發光的表現上具有光開關特性,化學性合成之錯合物3-5其在254 nm激發下皆呈現發光關閉狀態,在360 nm激發下分別呈現青藍色發光、淡粉色發光、白色發光;物理性合成之錯合物6-8在254 nm激發下皆呈現綠色發光,在360 nm激發下錯合物6和7呈現弱白光,化合物8呈現粉色發光。在錯合物9和10的固態螢光可看出,錯合物9呈現紫色發光、錯合物10呈現不發光的狀態。 錯合物感測應用上,在陰、陽離子感測上,錯合物2在陽離子感測上對Fe3+離子有非常高的選擇性感測,其焠熄率為95%,焠熄常數(Ksv)為8.60  103 M-1,偵測極限(LOD)為0.40 M。陰離子感測部分對I-、Cr2O72-、MnO4-有良好的焠熄效果,其焠熄率分別為97%、96%、99.5%。錯合物9在陽離子感測中對於Fe3+、Co2+、Ni2+、Cu2+有良好的焠熄效果,其焠熄率分別為95%、93%、97%、98%;陰離子感測中,其對CrO42-、Cr2O72-、MnO4-、CO32-、PO43-有明顯的焠熄效果,焠熄率分別為99%、99%、97%、96%、95%。錯合物10的感測上其對Al3+、Cr3+、Cd2+、Zn2+有螢光增強的表現,尤其在Zn2+在螢光增強的表現極其優秀,在Cd2+、Zn2+感測中其圖譜顯示出其峰值趨向於錯合物9的趨勢,推測為離子交換所造成的螢光增強變化。在有機小分子感測上,錯合物9在酚類感測中對BPB(雙酚B)和BPAF(雙酚AF)及BPZ(雙酚Z)有明顯的焠熄的效果,其焠熄率分別為35%、35%、65%。在胺類感測中,對於含有烷基胺(Alkylamine)之胺類小分子1,4-Phenylenedimethanamine、4-Aminobenzylamine、Ethylenediamine(乙二胺)、Diethylamine(二乙胺)、Triethylamine(三乙胺)具有良好的焠熄效果,其焠熄率分別為96%、99%、93%、98%、98%。

並列摘要


In this thesis, a flexible tris-phosphonate ligand, namely 2,4,6-tris(phosphomethyl)mesitylene (H6TPMM), has been synthesized by Michaelis-Arbuzov reaction. Room temperature slow diffusion reactions of H6TPMM and Eu(NO3)3‧6H2O and Tb(NO3)3‧5H2O afforded corresponding lanthanide complexes [Eu2(H3TPMM)2(H2O)6]‧10H2O (1) and [Tb2(H3TPMM)2(H2O)6]‧xH2O (2). Single-crystal X-ray diffraction analysis reveals that complex 1 has a dinuclear metallacage structure. Powder X-ray diffraction analysis confirmed that complex 2 is isostructural and isomorphous with that of 1. Through stochiometric chemical synthesis control, heteronuclear lanthanide analogues [EuxTb2-x(H3TPMM)2(H2O)6]‧nH2O (x = 1 (3), 0.5 (4), 1.5 (5) ) have also been prepared. Through physical mixture of 1 and 2, Eu/Tb mixed materials Eu/Tb-1:1 (6), Eu/Tb-1:3 (7), and Eu/Tb-3:1 (8) have been obtained. On the other hand, reactions of H6TPMM and Cd(ClO4)2 and CuCl2‧2H2O with 2,2’-(pyridyl)benzimidazole (2,2’-pbim) afforded complexes [Cd2(H4TPMM)2(2,2'-pbim)2(H2O)4]‧2H2O (9) and [Cu2(H4TPMM)2(2,2'-pbim)2]‧H2O (10), respectively. Complexes 9 and 10 both adopt dinuclear metallacage structures. These phosphonate based materials 1-9 show remarkable photoluminescence properties. Upon irradiation, Eu complex 1 and Tb complex 2 show characteristic red and green emissions, respectively. It is interesting that chemical-mixed materials 3-5 and physical-mixed materials 6-8 exhibited light-emitting switching behaviors. Upon excitation at 254 nm, materials 3-5 display turn-off properties, while materials 6-8 showed green emissions. Upon excitation at 360 nm, materials 3-5 show cyan, pink, and white emissions, respectively, while materials 6-8 show white, white, and pink emissions, respectivrly. In the cases of Cd complex 9 and Cu complex 10, the former show purple emission while the latter is fluorescence silent. Tb complex 2 and Cd complex 9 have been applied as fluorescence turn-off sensors towards anions, cations, and small organic molecules, while Cu complex 10 has been utilized as fluorescence turn-on sensor toward cations. The strong green emission of 2 would be effectively turned off by Fe3+, I-, Cr2O72-, and MnO4- with excellent quenching efficiency, high sensitivity and good selectivity. Complex 9 shown has great quenching effects towards several cations (Fe3+, Co2+ , Ni2+, Cu2+), anions (Cr2O72-, Cr2O72-, MnO4-, CO32-,PO43-), bisphenols (BPAF, BPB, BPZ), and amines (1,4-phenylenedimethanamine, 4-aminobenzylamine, ethylenediamine, diethylamine, and triethylamine), with high quenching efficiency, sensitivity, and anti-interference ability. On the other hand, the luminescence of Cu complex 10 would be greatly enhanced by the addition of Al3+, Cr3+, Cd2+, Zn2+, with good sensitivity and anti-interference ability.

參考文獻


[1] S. J.I. Shearan, N. Stock, F. Emmerling, J. Demel, P. A. Wright, K. D. Demadis, M. Vassaki, F. Costantino, R. Vivani, S. Sallard, I. R. Salcedo, A. Cabeza, M. Taddei, Crystals 2019, 9, 270.
[2] K. Xanthopoulos, Z. Anagnostou, S. Chalkiadakis, D. Choquesillo-Lazarte, G. Mezei, J. K. Zarȩba, J. Zoń, K. D. Demadis, Crystals 2019, 9, 301.
[3] H.-L. Sung, T.-M. Her, Z.-J. Hu, C.-H. Lee, J. Chin. Chem. Soc. 2016, 63, 1000–1006.
[4] H.-L. Sung, T.-M. Her, K. Lin, J.-J. Hong, Z.-Y. Wang, Inorg. Chim. Acta 2017, 466, 370–375.
[5] H.-L. Sung, Z.-J. Hu, C.-Y. Chen, J.-Y. Wu, Inorg. Chim. Acta 2020, 510, 119750.

延伸閱讀