透過您的圖書館登入
IP:3.137.218.215
  • 學位論文

可於空氣中穩定操作之新穎N型有機場效電晶體:薄膜形貌、元件結構與電性研究

Novel N-Type Air-Stable Organic Field Effect Transistor:Film Morphology, Device Structure and Electronic Characteristics

指導教授 : 郭明裕
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


縱觀現今有機場效電晶體的發展,P-type材料已經有不錯的電性;但為了將兩種形式的元件結合成互補式電晶體,達到節省能源的目的,以及改進單一電晶體的缺點。因此,研究可於空氣中穩定操作,且與P-type相同級數的載子遷移率之新穎N型有機場效電晶體的開發是無可或缺的。 本篇研究主要發展新的N-type材料,以Perylene diimide一系列衍生物作為有機半導體材料,利用十八烷基矽烷(ODTS(C18))和八烷基矽烷(OTS(C8))兩種自組裝單層薄膜分子修飾基板表面,並以真空蒸鍍的方法在不同的溫度下沉積有機薄膜,再藉由原子力顯微鏡和X-ray繞射儀探討薄膜形貌、元件結構與電性的關係。最後實驗結果,PDI-C8有最佳的電性,其載子遷移率為2.16×10-1 cm2/Vs電流開關比高達6.06×105。 此外,將自組裝單層薄膜以絨布磨刷,再沉積有機分子,藉此觀察磨刷的步驟對晶粒大小和電性的的影響。

並列摘要


Although P-type Organic Field Effect Transistors (OFET) have already performed well in electronic property, we combine the P-channel OFET with N-channel one in complementary circuits in order to save power and improve the drawbacks of single type OFET. Therefore, it is necessary to develop the N-type OFET which not only can be air-stable but also have the same order of mobility as much as P-type OFET. In this study, we have developed a series of perylene diimide derivatives as novel N-type organic semiconductor materials and two kinds of organic molecular self-assembled monolayer (SAM), octadecyltrichlorosilane (ODTS (C18)) and octyltrichlorosilane (OTS (C8)), were used to modify substrate surface. These organic thin film were deposited in method of vacuum evaporation at different temperatures and then characterized by atomic force microscopy and X-ray diffraction to obtain the relations between film morphology, structure and electrical property. Finally experimental results revealed that PDI-C8 has the best electrical properties; the carrier mobility is 2.16×10-1 cm2 / Vs and On/off current ratio up to 6.06×105. Additionally, organic materials was also deposited on a rubbed SAM of n-octadecyltrichlorosilane (ODTS (C18)) and octyltrichlorosilane (OTS (C8)) surfaces to investigate the effects of rubbing on grain size and carrier mobility.

參考文獻


(1) Pope, M.; Kallmann, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2042-2043.
(2) Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; MacDiarmid, A. G. Phys. Rev. Lett. 1977, 39, 1098-1101.
(3) Tsumura, A.; Koezuka, H.; Ando, T. Appl. Phys. Lett. 1986, 49, 1210-1212.
(4) Voss, D. Nature 2000, 407, 442-444.
(5) Huitema, H. E. A.; Gelinck, G. H.; van der Putten, J. B. P. H.; Kuijk, K. E.; Hart, C. M.; Cantatore, E.; Herwig, P. T.; van Breemen, A. J. J. M.; der Leeuw, D. M. Nature 2001, 414, 599-599.

延伸閱讀