透過您的圖書館登入
IP:216.73.216.86
  • 學位論文

(n, k)-星狀圖之ω-寬直徑

ω-Wide Diameters of (n, k)-Star Graphs

指導教授 : 杜迪榕

摘要


陳榮傑教授和他的研究生在1995年提出了一種新的圖形─(n, k)-星狀圖,它是廣義的星狀圖 。他們同時也證明了在1 ≤ k ≤ |_n/2_|時,(n, k)-星狀圖的直徑為2k-1。要評估圖形的容錯特性,則求解圖形的寬直徑是個很重要的議題。林聰吉博士和杜迪榕教授於2008 年已解出當1 ≤ k ≤ |_n/2_|時,(n, k)-星狀圖寬直徑的上限及下限,其值為它的直徑加二。本研究將進一步探討1 ≤ k ≤ |_n/2_| 時,(n, k)-星狀圖的ω-寬直徑,此乃更廣義的寬直徑,根據定義,在(n, k)-星狀圖中, 1-寬直徑等於它的直徑,而 (n-1)-寬直徑等於它的寬直徑,故求解的範圍縮小至寬度ω為2到n-2之間。我們的結果分析了 (n, k)-星狀圖的ω-寬直徑,當3 ≤ k ≤ |_n/2_|時,ω-寬直徑分別如下:若1 ≤ w ≤ k-1,則ω-寬直徑等於其直徑;若k-1 < w ≤ 2k-2,則ω-寬直徑為其直徑加一;若2k-2 < w ≤ n-1,則ω-寬直徑為其直徑加二。若當k = 2時,,ω-寬直徑分別如下:若ω = 1則ω-寬直徑為其直徑;若2 ≤ w ≤ n-1,則ω-寬直徑等於其直徑加二。

並列摘要


Chiang and Chen proposed in 1995 the (n, k)-star graph which is a generalized version of the n-star graph. They also shown that the diameter of the (n, k)-star graph is 2k-1 when 1 ≤ k ≤ |_n/2_|. To evaluate the fault-tolerant property of a graph, determining the wide diameter of the graph is a very importance issue. Lin and Duh (2008) computed upper and lower bounds of the wide diameter of the (n, k)-star graph, whose values are the same and its diameter plus 2 when 1 ≤ k ≤ |_n/2_|. This work further discuss w-wide diameters, the general wide diameters, of the (n, k)-star graph for 2 ≤ w ≤ n-2. By definition, the 1-wide diameter of the (n, k)-star graph is its diameter, and the (n-1)-wide diameter is its wide diameter. Our result shows that w-wide diameters of the (n, k)-star graph are its diameter for 1 ≤ w ≤ k-1, diameter plus 1 for k-1 < w ≤ 2k-2 and diameter plus 2 for 2k-2 < w ≤ n-1, respectively, when 3 ≤ k ≤ |_n/2_|, and diameter for ω = 1 and diameter plus 2 for 2 ≤ ω ≤ n-1, when k = 2.

參考文獻


[1] S.B. Akers, D. Harel, B. Krishnamurthy, The star graph: an attractive alternative to the n-cube. Proc. Int. Conf. Parallel Process., 1987, pp. 393–400.
[2] T. Araki, Y. Kikuchi, Hamiltonian laceability of bubble-sort graphs with edge faults. Information Sciences 177 (13) (2007) 2679–2691.
[3] R. Bashirov, V. Crespi, Analyzing permutation capability of multistage interconnection networks with colored Petri nets. Information Sciences 176 (21) (2006) 3143–3165.
[4] F. Buckley, F. Harary, Distance in Graphs. Addison-Wesley, CA, 1990.
[5] B.J. Chang, R.H. Hwang, Modeling and analyzing the performance of adaptive hierarchical networks. Information Sciences 176 (5) (2006) 522–549.

被引用紀錄


張茹樺(2008)。減肥購物詐欺之案例分析〔碩士論文,國立臺北大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0023-0102200813341000
林毓凡(2011)。瘦,夠了!─一趟與身體和解的冒險旅程〔碩士論文,國立臺灣師範大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0021-1610201315222578

延伸閱讀


國際替代計量