透過您的圖書館登入
IP:18.222.239.77
  • 學位論文

以液相沉積法成長二氧化矽奈米顆粒混合3-氨基丙基三乙氧基矽氧烷奈米複合薄膜製作多晶矽線生物感測器

Polysilicon Wire Inorporated with Mixture of Silica Nanoparticles/r-APTES Nanocomposite Prepared by Liquid Phase Deposition for pH Sensing

指導教授 : 吳幼麟
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文旨在研究利用液相沉積法(Liquid phase deposition,LPD)成長3-氨基丙基三乙氧基矽氧烷(3-Aminopropyltriethoxysilane , γ-APTES)混聚二甲基矽氧烷(Poly-dimethylsiloxane,PDMS)處理之二氧化矽奈米顆粒(silica Nanoparticles,NPs)感測薄膜,探討不同濃度的γ-APTES 或不同比例的NPs 所成長的感測薄膜特性,以及在製程中使用紫外光(Ultraviolet,UV)照射對薄膜特性的影響。我們以液相沉積(Liquid phase deposition,LPD)的方式來製備感測薄膜,是希望能批次製作陣列型生物感測器。在分析上先是以原子力顯微鏡(Atomic Force Microscopy,AFM)來觀察薄膜表面形貌的差異,再對薄膜於多晶矽線(Poly-silicon wire,PSW)進行漏電流與pH 靈敏度 分析,並利用傅立葉轉換紅外線光譜儀(Fourier transform infrared spectroscopy,FTIR)來分析不同條件下的γ-APTES+NPs 材料的鍵結。由實驗的結果我們可以發現,不同濃度的感測薄膜與不同沉積時間,其γ-APTES+NPs 感測薄膜漏電流值較γ-APTES 感測薄膜低,且γ-APTES+NPs 感測薄膜的靈敏度也來較γ-APTES 感測薄膜高,我們從FTIR 的分析中,確定LPD 能成功成長二氧化矽NPs 與γ-APTES 混成薄膜,證明γ-APTES+NPs 感測薄膜的低漏電流、高靈敏度是由二氧化矽NPs 的摻入與γ-APTES 產生鍵結而導致。另外從漏電流分析中了解到以UV 光照射處理之γ-APTES+NPs 感測薄膜,γ-APTES 的氨基(NH2)會與 OH 鍵更易產生反應;而從靈敏度的分析中可發現,以UV 光輔助成長γ-APTES+NPs感測薄膜,其感測特性有明顯的改善。

並列摘要


The aim of this thesis focuses on the film growth of 3-aminopropyltriethoxysilane (γ-APTES) mixed with PDMS treated silica nanoparticles (NPs) by liquid phase deposition (LPD) for sensor applications, investigating the sensing properties of the film with different γ-APTES concentrations or different mixed ratios of NPs, as well as the effect of ultraviolet (UV) light exposure during the film preparation process. The reason for depositing the γ-APTES+NPs composite film by LPD method is hoping that we can fabricate the biomedical sensors array by mass production. In this work, we used atomic force microscopy to observe the surface morphology differences of the composite films, and measured the leakage current as well as pH sensing characteristics of the γ-APTES+NPs composited film coating on a poly-silicon wire sensor. Fourier transform infrared (FTIR) spectroscopy was also used to analyze the possible chemical bonding structures of the γ-APTES+NPs composite films prepared under different conditions. From the experimental results, it is found that the γ-APTES+NPs composited films prepared with different γ-APTES concentrations as well as deposition times always have lower leakage current and higher sensitivity than that of γ-APTES films. From the FTIR spectroscopy analysis, we confirm that the γ-APTES+NPs composited films can be successfully grown by LPD method, proving that adding NPs into the γ-APTES film is the root cause for improving the leakage current and sensitivity of the poly-silicon wire sensor. In addition, we learn from the leakage current measurement that the amino (NH2) bonds in the γ-APTES tend to react with the OH bonds more easily after UV exposure, leading to significant improvement in sensing characteristics of the γ-APTES+NPs composited films.

參考文獻


[1] Kenzo Maehashi, Taiji Katsura, Kagan Kerman, Yuzuru Takamura,Kazuhiko
Matsumoto, and Eiichi Tamiya (2006) ,Label-Free Protein Biosensor Based on
Aptamer-Modified Carbon Nanotube Field-Effect Transistors.
[2] Koji Nishida, Hiroyuki Sakaue, and Takayuki Takahagi (2007) , Immobilization of
Gold Nanoparticles on Silanized Substrate for Sensors Based on Localized Surface

延伸閱讀