透過您的圖書館登入
IP:3.15.5.183
  • 學位論文

應用於鍺電晶體之汲極源極和金屬接觸之研究

Source/Drain and Contact Engineering for Ge MOSFETs

指導教授 : 陳建亨
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文分為兩部份研究。其一,透過單層原子摻雜的方式應用在鍺基板上面,可於表面處形成非破壞性摻雜之超淺接面。其二,在金屬鍺化物部分,我們使用低功函數的鐿,透過基板升溫檢視能否形成良好之接面,以期降低費米能階鎖效應。 在單層原子摻雜的部份,我們透過二次離子質譜儀與二極體電性確認硼確實無法擴散進入鍺基板中,但在磷的部份我們成功的於表面深度五奈米內形成最高濃度有2.5×1019 atom/cm3以上的非破壞性摻雜之超淺接面。 金屬鍺化物的部分,本實驗使用兩種不同濺鍍加熱方式,一種為從升溫到降溫都待在製程腔體中的高熱預算,另外一種為只有濺鍍時才進去製程腔體的低熱預算,透過本實驗發現利用濺鍍形成的鐿薄膜在腔體裡獲得過多的能量後會產生結塊,我們找到了一個不會結塊的升溫條件去製作二極體,我們發現一般室溫下濺鍍的鐿要形成鍺化鐿需要透過RTA 500 ̊C 退火10秒,經過基板加熱型成的鐿只需要透過RTA 400 ̊C退火 10秒就形成相同的電性。

並列摘要


There are two sections of this thesis. First, we used the monolayer doping to form an ultra shallow junction with no damage on the germanium substrate. Second, we used the low work function metal element, ytterbium, to form the metal germanide. We expected to reduce Fermi level pinning effect by using the high deposition temperature of ytterbium thin film. In the part of monolayer doping, the SIMS profile and diode characteristic was used to examine the shallow junction formation. However, the p type dopant, boron, was hard to diffuse into germanium substrate even after the high temperature annealing. And the n type dopant, phosphorus, could diffuse into the substrate and obtain an ultra shallow (~5nm) junction with the highest doping level 7×1019 cm-3 and no damage. In the part of germanide, we used the high and low thermal budgets of sputtering to examine the ytterbium thin film. The high thermal budget is that the process wafer placed inside the main chamber during the whole process time. The low thermal budget is that the process wafer placed inside the main chamber only at the metal deposition. We find that placing inside the hot chamber for a long time cause the ytterbium film agglomeration. We found that sputtering at room temperature to deposit ytterbium which need RTA 500 ̊C 10s to form Yb3Ge5. But sputtering at high temperature could reduce the RTA temperature to 400 ̊C of forming the ytterbium germanide.

參考文獻


[1] G. E. Moore, “Cramming More Components onto Integrated Circuits”, Electronics 38 (1965) number 8 .
[2] P. T. Liu, T. C. Chang, S. M. Sze, F. M. Pan, Y. J. Mei, W. F. Wu, M. S. Tsai, B. T.Dai, C. Y. Chang, F. Y. Shih, and H. D. Huang, “The effect of plasma treatment for
low dielectric constant hydrogen silsesquioxane (HSQ),” Thin Solid Films,vol. 332, p. 345, 1998.
[3]莊達人編著, “VLSI 製造技術”, 高立圖書有限公司 (1997).
[4] K. L. Wang, T. C. Holloway, R. F. Pinizzotto, Z. P. Sobczak, W. R. Hunter, and A. F. Tash, “Composite TiSi2/ n+poly-Si Low Resistivity Gate Electrode and Interconnect for VLSI Device Technology”, IEEE Trans. Electron. Device 29 (1982) 547-553.

延伸閱讀