透過您的圖書館登入
IP:18.223.125.219
  • 學位論文

統計分布對於科學概念學習影響之探討 -以馬克士威速率分布為例

An investigation on the effectiveness of teaching scientific concepts via statistical distribution -Using Maxwell distribution as an example

指導教授 : 譚克平
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究目的在於探討統計分布概念的理解是否影響學生學習以分布為基礎的科學概念,因此研究者提出「以統計分布為基礎的資料處理教學模式」(Distribution-Data Handling teaching model, DDH teaching model),並探究該模式是否有助於學生瞭解此類科學概念。本研究以馬克士威速率分布(Maxwell distribution)的概念為例,研究對象為高中3年級的資優學生,已具有氣體動力論的先備知識。採準實驗研究設計,控制組接受直述模式教學,實驗組接受DDH模式教學,兩組學生皆於課程實施前、後進行統計分布概念與馬克士威速率分布概念的前測、後測,並以態度問卷與半結構式晤談瞭解學生的想法。 研究發現:(1) 統計分布的概念會與以分布為基礎的科學概念彼此對應,學生愈能掌握統計分布的整體特徵,對於馬克士威速率分布概念的學習成效愈佳,愈能以整體的角度來分析氣體運動速率分布,且較能完整詮釋溫度與分子量兩變因對於速率分布函數的影響。(2) 只聚焦於單一或是少數分布特徵的學生,較無法掌握整體的運動速率分布情形,在條件改變時,僅留意部分數值發生的變化,而非掌握了速率分布的整體變化。(3) 透過資料處理與統計分布結合的方式,學生能建構出大量氣體分子的整體速率分布概念,且更能體會各個統計量的內涵,對於速率分布能有全面性的瞭解。

並列摘要


Maxwell speed distribution is a difficult topic to many senior high school students. This study proposed that a better understanding can be gained if students are taught statistical distribution before the formal introduction of this topic. Towards this purpose, teaching materials on Maxwell distribution were designed according to the Distribution Data Handling teaching model that was developed for this study with emphasis from the perspective of statistical distribution. A teaching experiment was then conducted to test out the effectiveness of this approach according to the quasi-experimental design. The participants were from two grade twelve classes for gifted students in a senior high school located in Taipei city. The effectiveness of the instruction and materials were evaluated by analyzing students’ responses to the statistical distribution concept test, Maxwell distribution concept test, an attitude questionnaire, as well as data from class videos and semi-structured interviews. Several results were observed from this study. First, since there is a correspondence between the statistical concept of distribution to those scientific concepts that are based on distribution, students with better grasped of the features of distribution performed better after instruction. They could better relate to the molecular speed distribution from a global and integrated perspective. They could better comprehend the effect of temperature and molecular weight on the Maxwell distribution. Second, for students who tended to focus only on a single or part of the features of a distribution, they were observed not being able to comprehend the Maxwell distribution holistically. When some the surrounding conditions were changed, they tended to focus on changes of a few data points and not on all of the data. Third, after formal introduction to statistical distribution and hands-on experiences with handling data, students could better understand Maxwell distribution holistically as well as the underlying meaning of quantities in relation to the speed distribution.

參考文獻


教育部(2003)。國民中小學九年一貫課程綱要數學領域。臺北市:教育部。
蔡福興、游光昭、蕭顯勝(2008)。從新學習觀點發掘數位遊戲式學習之價值。課程與教學季刊,11(4),237-278。
邱顯博(2002)。國二、國三學生的擴散作用概念與概念改變之研究。未出版之碩士論文,國立臺灣師範大學科學教育研究所,臺北市。
趙君培(2009)。國三學生對分佈特徵與分佈概念了解情形之研究。未出版之碩士論文,國立臺灣師範大學科學教育研究所,臺北市。
Ausubel, D. P. (1963). The psychology of meaningful verbal learning: An introduction to school learning. New York, NY: Grune & Stratton.

延伸閱讀