透過您的圖書館登入
IP:3.16.1.82
  • 學位論文

矽奈米線場效應電晶體之製備: GST的偵測與沖洗緩衝液之測試

指導教授 : 孫英傑教授 陳逸聰教授
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


Rab3A 是一種小分子量的GTP結合蛋白質,常被用來調控許多種生理機制,包含了基因表現(Gene expression)、細胞骨架的重排(Cytoskeleton rearrangement)、胞吐作用(Exocytosis)等。像這樣的GTP結合蛋白質是具有水解GTP的活性,而這些蛋白質通常與GDP結合時是呈現非活化狀態,當被活化時,會進行GDP與GTP的交換,再與下游的蛋白質進行後續的作用。胞吐作用(Exocytosis),胞吞作用(endocytosis)和胞吞後轉移作用(transcytosis)是由於細胞內的囊泡運輸(vesicle trafficking)而進行的,經由胞吐分泌(exocytosis secretion)所釋放出的神經傳導物質與賀爾蒙是神經突觸傳輸(synaptic neurotransmission)與細胞-細胞聯絡(cell-cell communication)的一個基本步驟,並同時牽涉更多及複雜的蛋白質與蛋白質間的交互作用。 由於Rab3A的某段氨基酸序列上有標定一GST酵素,因此本實驗中將使用GSH進行矽奈米線的表面修飾,並以官能化的場效應電晶體初步測試GST的電訊號即時偵測以及同時測試沖洗緩衝溶液之沖洗效率,以期晶片具有可再利用之可行性。 生物與化學物種的偵測與定量分析是健康保健和生命科學領域中的中心點,且涵蓋了疾病的診斷以及新型藥物的檢測。半導體奈米線所架構出的電子元件常被做為可對於生物和化學物種的即時電訊號偵測,並且為一超靈敏的實驗平台。在此論文中,我們將詳細地介紹奈米線電子偵測器的架構。第一:將介紹單晶且均勻的矽奈米線合成以及後續的矽奈米線溶液的均勻懸浮液。第二:詳述奈米線電子元件的整合製程。第三:電子元件的化學表面修飾而使其具有功能性。第四:修飾後之生物感測器的電訊號偵測。

並列摘要


Small GTP binding proteins, also called G-proteins, for example Rab3A, are involved in modulating many physiological activities, including gene expression, cytoskeleton rearrangement, exocytosis, etc. These G-proteins have GTPase activity and normally are inactive bound with GDP; when activated, GDP will be exchanged with GTP to allow the G-proteins to interact with downstream proteins. Exocytosis, endocytosis and transcytosis are performed by intracellular vesicle trafficking. Exocytosis secretion of neurotransmitters and hormones is a fundamental step in synaptic neurotransmission and cell-cell communication and involves sequential steps of complex protein-protein interactions. In this experiment, we used GSH for the surface modification of silicon nanowires. And we then conducted a real-time, label-free electrical signal measurement for GST biosensing, and test of the washing efficiency with washing buffer by silicon nanowire field-effect transistors. Detection and quantification of biological and chemical species are central to many areas of healthcare and life sciences, ranging from diagnosing disease to the discovery and screening of new drug molecules. Semiconductor nanowires configured as electronic devices have emerged as a general platform for ultra-sensitive direct electrical detection of biological and chemical species. Here we describe a detailed protocol to fabricate nanowire electronic sensors. First, the growth of uniform, single crystal silicon nanowires, and subsequent isolation of the nanowires as stable suspensions are outlined. Second, fabrication of addressable nanowire device arrays is described. Third, modification of the nanowire device surfaces with receptors is described. Fourth, an example modification and measurements of the electrical response from devices are detailed. The silicon nanowire (SiNW) devices have demonstrated applications for label-free, ultrasensitive and highly-selective real-time detection of a wide range of biological and chemical species, including proteins, nucleic acids, small molecules and viruses.

並列關鍵字

無資料

參考文獻


[1] Wilson G. S.; Gifford, R. Biosens. Bioelectron. 2005, 20, 2388.
[2] Newman, J. D.; Turner, A. P. Biosens. Bioelectron. 2005, 20, 2435.
[3] Verma, N.; Singh, M. BioMetals 2005, 18, 121.
[5] Erickson, D.; Li, D. Anal. Chim. Acta 2004, 507, 11.
[6] Campas, M.; Katakis, I. Trends Anal. Chem. 2004, 23, 49.

延伸閱讀