透過您的圖書館登入
IP:3.15.234.89
  • 學位論文

穿戴式裝置於陸上與水中運動之信效度檢驗

Measurement of Reliability and Validity of Wearable Sensor for Land and Aquatic Physical Activities

指導教授 : 李恆儒
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


前言:近年來運動風氣盛行,適當的調整運動強度可以有效的提升運動效果,穿戴式感測器能有效的監控身體活動數值,但目前較少數感測器能運用在陸上與水中環境,且能準確地反應數值。目的:探討穿戴式裝置在陸上與水中運動時,各測量數值的信效度。方法:以10名健康人與10名大專甲組游泳選手分別為陸上運動組和水中運動組進行實驗。陸上運動組於跑步機上進行固定速度(3km/h、10km/h)的實驗,利用十台Vicon紅外線攝影機 (200 Hz)擷取運動時的步頻與髖關節角度、Delsys感測器擷取運動時的衝擊,再於田徑場進行固定頻率(120step/min、90step/min)以及固定步輻(100cm/stride、140cm/stride)實驗;水中運動組進行50公尺游泳,由2名檢測員分別計算划手次數和游泳秒數,使用攝影機拍攝運動時的划幅、划頻。以Pearson積差相關來檢測穿戴式裝置與實驗儀器間的效標關聯效度,並以ICC來檢測穿戴式裝置的再測信度,統計水準α皆訂為.05。結果:在陸上運動中,走路時的數據(步頻、衝擊、髖關節活動範圍)與跑步時的步頻與衝擊皆有高度相關(r=0.89-0.99),在跑步時,髖關節活動範圍呈現中度相關(r=0.66);在水中運動時的秒數、划手次數與划幅皆有高度相關(r=0.86-0.88),在划頻則呈現中度相關(r=0.55),感測裝置在陸上運動的數據(步頻、衝擊、髖關節活動範圍)的信度考驗皆有高度再測信度(ICC=0.98-0.99),而在水中的數值,秒數為中度再測信度(ICC=0.65),划手次數為低度再測信度(ICC=0.56)。

關鍵字

穿戴式裝置 效度 信度

並列摘要


Introduction: Wearable sensor could measure exercise intensity to provide instant feedback. However, very few sensors could accurately measure values both in land and aquatic environment. Purpose:The aim of this study was to assess validity and reliability of wearable sensor usage in land and aquatic environment. Methods:10 healthy subjects and 10 college swimmer were recruited for this study. In land environment, the subjects required to walk and run on treadmill with different speeds (3km/h、10km/h). Ten Vicon cameras (200 Hz) were used to capture marker trajectory to calculate gait cadence and joint range of motion. One Delsys sensor was used to capture foot impacts when walking at different speeds (120steps/min、90steps/min) and different stride distance (100cm/stride、140cm/stride). In aquatic environment, the subjects required to swim 50m with freestyle. The stroke distance and stroke rate were captured by camera. Pearson correlation coefficient was used to for statistical analysis. ICC represented the reliability of measured variables. Results: In land environment, walking and running parameters were highly correlated (r=0.89-0.99). The range of motion during running was moderately correlated In aquatic environment, swim time、stroke and stroke distance were highly correlated (r=0.86-0.88). The stroke rate was moderately correlated. In land environment, all parameters were highly correlated (ICC=0.98-0.99). In aquatic environment, swim time and stroke were moderately correlated.

並列關鍵字

wearable sensor validity reliability

參考文獻


Aziz, O., & Robinovitch, S. N. (2011). An analysis of the accuracy of wearable sensors for classifying the causes of falls in humans. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 19(6), 670-676.
Bayat, R., Barbeau, H., & Lamontagne, A. (2005). Speed and temporal-distance adaptations during treadmill and overground walking following stroke. Neurorehabilitation and neural repair, 19(2), 115-124.
Bize, R., Johnson, J. A., & Plotnikoff, R. C. (2007). Physical activity level and health-related quality of life in the general adult population: a systematic review. Preventive medicine, 45(6), 401-415.
Blair, S. N., & Connelly, J. C. (1996). How much physical activity should we do? The case for moderate amounts and intensities of physical activity. Research quarterly for exercise and sport, 67(2), 193-205.
Bohannon, R. W. (1997). Comfortable and maximum walking speed of adults aged 20—79 years: reference values and determinants. Age and ageing, 26(1), 15-19.

被引用紀錄


林昱安(2022)。探討穿戴式裝置於後疫情時代的應用成大體育學刊54(1),89-106。https://doi.org/10.6406/JNCKUPER.202204_54(1).0005

延伸閱讀