透過您的圖書館登入
IP:3.139.86.56
  • 學位論文

具半導體特性之複合中孔薄膜之合成、鑑定及應用

Syntheses, Characterizations and Applications of Mesoporous Zeolite-Graphene Oxide Thin Films

指導教授 : 劉沂欣

摘要


本研究利用三組成界面活性劑於溶液中自組裝形成微胞,並於矽晶片基板表面排列而形成的模板,在加入沸石晶種後,於模板周圍聚合生成具有中孔洞結構的沸石薄膜。分別透過界面活性劑組成調整、矽晶片表面處理以及沸石晶種的調控等,有效優化中孔洞沸石薄膜的形貌。並通過電子顯微鏡以及低略角X光散射來觀察中孔洞沸石薄膜的形貌以及結構。中孔洞沸石薄膜具有高度整齊排列、垂直於基板的中孔道結構,孔徑大小約為6-8 nm,於矽晶片表面具有極高的覆蓋率。得益於中孔道沸石薄膜的沸石組成以及中孔形貌,中孔道沸石薄膜在作為空間限制的載體以及催化等方面具有各種用途。   而通過簡單的化學氣相沉積過程,在不需添加任何額外的催化劑下,乙烯氣體能夠直接於此中孔洞沸石材料表面裂解,在不破壞中孔道結構、不堵塞孔洞的情況下生成石墨烯氧化物並包覆形成中孔洞氧化石墨烯–沸石複合材料。經由拉曼光譜以及X光光電子能譜進行材料組成鑑定確認其石墨烯氧化物的組成。藉由合成溫度、碳源以及降溫程序等製程上的調控,有效優化中孔道氧化石墨烯–沸石複合薄膜的合成,將原本中孔道沸石薄膜的導電度提升兩個級數以上,並大大增加了其在電化學方面的應用。

並列摘要


Highly ordered mesoporous zeolite thin films (MZTFs) were successfully grown on silicon wafers via interfacial self-assembly of micelles composed of a tri-surfactant system in a Stöber-like solution. With the systematical adjustments of micelle composition, wafer pretreatments, beta zeolite synthesis procedure, etc., the morphology of MZTFs can be optimized. MZTFs with extremely ordered hexagonal vertical channels and well-defined pore sizes (6-8 nm) can be synthesis on silicon wafers of centimeter-size examined by electron microscopy and grazing-incidence small-angle X-ray scattering techniques. Thanks to the morphology and the zeolite composition, MZTFs are potential materials for space-confined carriers, heterogeneous catalysts, etc. Mesoporous graphene-oxide thin films (MGTFs) with highly ordered hexagonal vertical channels as its template, MZTFs, were synthesis via simple chemical vapor deposition. Without any catalyst, ethylene can be pyrolyzed above zeolite surface into graphene-oxide directly evidenced in Raman spectroscopy and XPS techniques. After optimizing MGTFs synthesis procedure including reaction temperature, carbon source, cooling program, etc., the conductivity of MGTFs can be improved at least two magnitudes compared to its framework, MZTFs, and paved the way on the electrochemical application.

參考文獻


(1) Cundy, C. S.; Cox, P. A. Chem. Rev. 2003, 103, 663-702.
(2) Corma, A. Chem. Rev. 1997, 97, 2373-2420.
(3) Pires, J.; Carvalho, A.; de Carvalho, M. B. Microporous Mesoporous Mater. 2001, 43, 277-287.
(4) Davis, M. E. Nature 2002, 417, 813.
(5) Tao, Y.; Kanoh, H.; Abrams, L.; Kaneko, K. Chem. Rev. 2006, 106, 896-910.

延伸閱讀