透過您的圖書館登入
IP:3.142.12.240
  • 學位論文

相位-質心光鉗技術及其樣本三維旋轉模式數位全像斷層造影之應用

Phase-centroid trapping technique and applications for three-dimensional sample rotation in digital holographic tomography

指導教授 : 鄭超仁
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究提出了一種能達到穩定的樣品旋轉之相位質心光鉗技術並可以應用於三維旋轉模式數位全像斷層造影。透過數位全像波前感測得到樣品相位-質心的定量分析並透過折射率與質量之間的轉換關係可以使其近似為樣品的質心。為了完成樣品的三維旋轉,我們透過使用數位全像術的樣品分析數據來設計光鉗聚焦點的位置並產生一系列全角度旋轉的電腦全像片,透過電腦全像片可以在指定的三維位置上產生多個光鉗聚焦點,在本論文中,我們將產生一個光鉗聚焦點在樣品相位-質心的位置上以輔助旋轉,而其他光鉗聚焦點將設計在樣品長軸的末兩端點並透過操控兩端點的光鉗聚焦點以達到樣品三維旋轉。實驗結果表明,使用相位-質心光鉗技術的樣品旋轉在旋轉穩定性方面更好,並且在斷層重建過程中測量和驗證三維折射率而無需任何波前修正處理。

並列摘要


We have proposed a novel phase-centroid trapping technique which has stable sample rotation. It can be used for three-dimensional tomographic imaging. The digital holographic wavefront sensing gives an activated quantitative analysis for phase-centroid point of the sample. This information can be approximated to the mass-centroid of the sample according to the positive relationship between refractive index and mass. To accomplish rotation of the sample, the analyzed data of the sample by digital holographic microscopy can be used to design the position of focal points and to generate a series of computer-generated holograms. Using these CGHs multi-focal points are generated. One of the focused point is generated to trap phase-centroid of the sample and others will trap and rotate the sample around the phase-centroid of the sample. The experimental results have shown that the sample rotation with phase-centroid trapping is better in rotation stability. The three-dimensional refractive index is measured and verified without any image processing during the tomographic reconstruction procedure.

參考文獻


[1] U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
[2] U. Schnars and W. P. O. Jüptner, Digital Holography, Springer US, New York, 5-69 (2005).
[3] E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994-7001 (1999).
[4] E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291-293 (1999).
[5] V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microscopy 205, 2, 165-176 (2002).

延伸閱讀