透過您的圖書館登入
IP:3.134.102.182
  • 學位論文

以濺鍍與硒化法製作CIGS太陽能電池與製程參數特性驗證

Sputtering and selenium method produce CIGS solar cell with characteristics of process parameters verification

指導教授 : 桂清平
共同指導教授 : 牟善琦
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本文主要研究為CIGS太陽能電池之前驅層與吸收層利用脈衝直流磁控濺鍍與熱蒸鍍硒化方法製作CIGS合金薄膜,透過製程參數調整與規劃薄膜特性分析;校正QCM即時檢測CuGa與In材料之鍍膜速率,而且修正Tooling值;同時利用OES即時檢測電漿光譜頻率並且轉換在腔體內各元素頻譜強度分析;最後在2×10-3 Torr時,Cu、In、Ga元素穩定、面電阻和粗糙度都最佳。 在前驅層製作中規劃三種堆疊結構為SLG/Mo/In/CuGa、SLG/Mo/CuGa/In和SLG/Co-CuInGa其厚度能在1500 nm;在SLG/Co-CuInGa時必須調整CuGa與In鍍膜速率在相同時間達到相同厚度,所以調整其中一個功率;在調整過程得知In功率太高造成融靶,所以下降穩定的CuGa功率;在SLG/Mo/CuGa/In發現粗糙度越小面電阻越小,各類型試片表面粗糙度小於20 nm,表示均勻性佳;在SEM表面與橫斷面晶體結構中發現SLG/Co-CuInGa沒有達到預置厚度。EDS量測出原子濃度後帶入CGI和GGI公式計算;計算結果與文獻比對得出SLG/Mo/In/CuGa與SLG/Co-CuInGa轉換效率在18.5~18.9;XRD檢測結果與文獻比對特徵有Mo、Cu2In、Cu7In3、Cu9Ga4、Cu11In9、Cu16In9、CuIn2、In。 熱蒸鍍硒化前驅層規劃硒化基板溫度450與550°C、硒源溫度300°C;硒化後各試片平均粗糙度小於50 nm與文獻相比較小,但SEM觀察發現前驅層與硒化合不是很好,橫斷面部分有固態擴散產生,表面結構晶粒起伏有膨脹變大的現象;XRD特徵有CuInSe2、MoSe2、Mo、CuIn3Se5。 RTA退火後,SEM表面晶粒起伏變大,橫斷面表面層有複合再結晶形成塊狀晶。

關鍵字

CIGS 濺鍍 脈衝電壓 硒化 吸收層 退火

並列摘要


This paper, the main studied CIGS solar cell of precursor and absorber layer by using pulse DC magnetron sputter and thermal evaporation selenization methods manufacture CIGS alloy thin film to process parameter adjustment and film properties planning analysis. QCM corrected real-time detection of CuGa and In material deposition rate with tooling value. In the same time, using OES real-time detected plasma spectral frequency and transform analysis of strength spectrum of cavity of each element. Finally, in process pressure 2×10-3 Torr, Cu、In and Ga element stability, surface resistivity and roughness are preferred. Planning three stack structure SLG/Mo/In/CuGa, SLG/Mo/CuGa/In and SLG/Co-CuInGa in the production of precursor layer that thickness in the 1500 nm. In SLG/Co-CuInGa,it must adjust both CuGa and In deposition rate and thickness at the same time, so adjust both with one power. In power is too high in the adjustment processes that cause melting target, so decreased stability of CuGa power. SLG/Mo/CuGa/In discovered smaller average roughness of the smaller surface resistance, all types of sample surface roughness of less than 20 nm, expressed the good uniformity. SEM surface and cross-section of the crystal structure of Co-CuInGa doesn’t achieve preset thickness. CGI and GGI formula to calculate into the EDS measure the atomic concentration, calculation results and literature match SLG/Mo/In/CuGa and SLG/Co-CuInGa, the conversion efficiency of 18.5~18.9. XRD detection results match with literature on the characteristics of Mo、Cu2In、Cu7In3、Cu9Ga4、Cu11In9、Cu16In9、CuIn2、In. Thermal evaporation selenization precursor layer plan to selenide substrate temperature of 450 with 550 ° C, Se source temperature of 300 ° C. After the seleniding, each sample average roughness of less than 50 nm compared small with the literature,and SEM observation precursor is not good in selenization compound. Cross-section has solid-state diffusion phenomenon, and surface structure grain expansion becomes large phenomenon. The XRD characteristics of CuInSe2、MoSe2、Mo、CuIn3Se5. After RTA annealing, SEM surface grain becomes large, cross-section surface layer has a composite recrystallization to form a buck crystallization

參考文獻


1. 楊存然,「共蒸鍍法製備CIGS太陽電池吸收層及其元件特性研究」,國立中央大學,碩士論文,民國九十七年
2. 林純平,「共蒸鍍硒化銅銦薄膜鍍膜條件與組成成分之關聯性」,國立東華大學,碩士論文,民國九十七年
3. Dae-Hyung Cho, et al.,“Influence of growth temperature of transparent conducting oxide layer on Cu(In,Ga)Se2 thin-film solar cells”, Thin Solid Films Vol.520, Issue 6, P.2115-2118,2012
4. E. Wallin et al.,“Influence of the average Se-to-metal overpressure during co-evaporation of Cu(InxGa1−x)Se2”, Thin Solid Films Vol.519,P.7237-7240, 2011
5. Jaseok Koo, et al.,“ Cu(InGa)Se2 thin film photovoltaic absorber formation by rapid thermal annealing of binary stacked precursors” ,Thin Solid Films 2011

延伸閱讀