透過您的圖書館登入
IP:18.225.234.109
  • 學位論文

以狀態轉換之動態相關係數模型配適最佳投資組合

An Investment Portfolio with Optima Assets Allocation Using Regime Switching for Dynamic Correlation Model

指導教授 : 李孟峰
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本篇論文採用Denis Pelletier (2006) 所提出的狀態轉換之動態相關係數模型,將資產報酬之相關係數分為三個狀態,以估計其共變異數矩陣。實證研究則以台灣加權股價指數中的電子、金融與保險、食品、鋼鐵指數為投資組合標的資產,利用兩階段估計法估計投資組合的共變異數矩陣,將共變異數矩陣分為標準差矩陣與相關係數矩陣分別估計。首先第一階段,利用 GARCH 模型估計標準差矩陣,第二階段,給定第一階段的估計值下,利用 RSDC 之相關係數模型並透過EM演算法估計投資組合中各資產間的相關係數矩陣,由此得到投資組合標的資產的共變異數矩陣,以進行最佳化投資組合的資產配置。 研究結果發現,在限制報酬大於目標報酬值 r0 的最小風險投資組合下,在各個狀態數的模型下,皆有最小風險會隨著目標報酬的增加而增加的結果。另外,在控制風險小於給定的風險值 v0 之最大報酬投資組合下,不同狀態數的模型,對於最佳化後的報酬有不同的結果。當投資風險 v0 放寬以後,最大投資報酬即不受狀態變數的影響,且漸漸收斂到一固定報酬。本研究之投資組合配置與未進行最佳化資產配置的投資組合比較,控制風險的最佳化資產配置確實可以達到較高的報酬。

並列摘要


This research bases on Dennis Pelletier's (2006) "Regime Switching Dynamic Correlation" (RSDC) model to estimate the covariance matrix through dividing the correlation into three regimes. The electronics, finance, food, steel & iron sector indices of the TAIEX is adopted as the investment portfolio assets in practical analysis. The covariance matrix of portfolio is estimated by a two-stage approach. The covariance matrix is decomposed into a standard deviation matrix and a correlation coefficient matrix. In the first stage, the volatility of individual asset is estimated by GARCH model. In the second stage, condition on the estimates obtained in the first stage, the correlation matrix of the investment portfolio is estimated based on the RSDC model and the EM Algorithm. Once the covariance matrix of the investment portfolio is determined, optimization method is applied to finding the optimal asset allocation and the optimal return of the investment portfolio will be evaluated accordingly. The result of this study shows that an investment portfolio having the minimum risk constraining on target return greater than a fixed value r0 will increase as r0 increased. And there is only a slight difference among the minimum risks obtained from different number of regimes. On the other hand, an investment portfolio having the maximum return constraining on the risk less than a fixed value v0 will also increase as v0 increased. But, when the restricted upper bound of investment risk v0 is small, the return of the optimum return varies for RSDC models with different number of regimes. When the restricted upper bound of investment risk v0 becomes larger, the number of regime does not affect investment return and eventually the investment return converges to a fixed value. It is also found that the optimal allocation of an investment portfolio proposed by this research will generate higher returns than an investment without optimal allocation.

參考文獻


3.陳仕偉 ,2005。「景氣波動變異對景氣轉折點認定上影響:跨國的實證研究」 ,人文及社會科學集刊 ,第18 卷第一期(95/3),頁37-76 。
2.胡文正 ,莊忠柱 , 2003 。 「利用狀態轉換模型捕捉臺灣股價指數與期貨市場報酬與波動性的動態關係」 , 真理大學管理科學研究所碩士論文 。
5.Ang, Andrew and Geert Bekaert (2003)," How Do Regimes Affect Asset Allocation?", NBER. Working Paper 10080.
8.Bollerslev, T. (1986) , "Generalized Autoregressive Conditional Heteroskedasticity." journal of Econometrics, 31, 307.327.
9.Bollerslev,T.(1990) , " Modeling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model." Review of Economics and Statistics, 72, 498-505.

被引用紀錄


邱思妤(2011)。在風險值限制下考量動態波動的最適投資組合〔碩士論文,國立臺北大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0023-1307201112433200

延伸閱讀