透過您的圖書館登入
IP:18.222.184.162
  • 學位論文

超音波輔助合成奈米銀之研究

Ultrasonic assisted synthesis of silver nanopowder

指導教授 : 蕭明謙
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


當固體粒子之粒徑逐漸縮小時,表面原子數較多,物理及化學性質如光、電、磁、燒結、熔點及催化性質都與巨觀時有所不同,因此奈米粒子會產生體積效應、表面效應、粒子交互作用等。奈米銀(Ag)具良導電性之金屬奈米粒子,可作為導電性之複合材料,此外也可應用在藥物、殺菌劑等,因此銀不論在電子工業、傳統工業、光電科技及醫藥保健方面皆有廣泛的應用。 製備奈米粒子最常見的方法為化學還原法,過程中添加前驅物、還原劑、鹼劑和保護劑,以還原劑還原前驅物而得到奈米微粒,目前研究中以超音波促進化學還原法製備奈米銀之研究較少,超音波主要的原理是當超音波在互不相溶的液體中,在適合的條件下,會有空化現象的產生,空化現象會產生氣泡,當氣泡破裂時在很短的時間內會產生局部的加熱和高壓,同時會使兩相的介面打破產生乳化作用,使兩相不互溶液體能充份混合,因此應用於化學反應中具有促進作用,可以改善反應條件、加快反應速度和提高產率,還可使一些難於進行,甚至通過傳統方法不能進行的反應得以順利進行。故本研究利用化學還原法搭配超音波促進銀奈米結構之合成,以化學還原法製備奈米級粒子,過程中由葡萄糖作為還原劑,尿素與NaOH為促進反應所加入之鹼劑,另外還必須加入保護劑,保護劑是為了不使粒子之間彼此聚集,使用分子量約50000 的 PVP。進一步以超音波震盪於85℃下促進反應的進行。 在研究中我們製備出Ag奈米粒子,並探討不同 溫度、保護劑含量、反應時間、前驅物濃度等變數對銀奈米粒子的影響,最後比較傳統化學還原法與超音波促進化學還原法所合成銀奈米結構之差異,最後利用UV-Vis頻譜及DLS來分析其特性。可歸納出以下重要成果: 1.超音波促進化學還原法合成奈米銀,反應時間30 min時,奈米銀大量產生。 2.增加反應溫度可以增加奈米銀的合成,在90 ℃時奈米銀大量產生。 3.提高AgNO3濃度至1 N時,奈米銀粒子在超音波促進下迅速生長,而添加過多的銀,在420 nm所的奈米銀特徵峰將較不明顯。 4.PVP濃度會影響奈米銀粒子之合成,最佳的PVP 添加量為8.5*10-3 M。 5.超音波空化現象產生的氣泡破裂時會在很短的時間內產生局部的加熱和高壓,因此在相同條件下,超音波相較於一般傳統化學還原法可快速合成奈米銀粒子。

並列摘要


Silver has been widely used in a variety of applications such as electronics, catalysis, photonics and photography due to its unique properties. For example, silver has the highest thermal conductivity, electrical conductivityand and reflectivity of all metals. Several methods can be applied to synthesize silver nanoparticles with well-defined shapes. The majority of the more simple approaches are based on the reduction of silver nitrate by sodium borohydride or sodium citrate. Recently, ultrasonic irradiation assited synthesis methods had been widely studied for generating novel materials with unusual properties and much kind of nanomaterials with various shapes had been created. In this research, we attempt to prepare silver nanoparticles by ultrasonic irradiation of sliver nitrate aqueous solution with PVP as surfactant and soft template agent, NaOH and urea as the reducing agent, and rapid synthesis of silver nanoparticles by means of ultrasonic irradiation. As shown in results, the significant conclusions are summarized as below: 1.The use of ultrasonic irradiation singnificant synthesis of silver nanoparticles at 30min. 2.Increasing temperature would enhance singnificant synthesis of silver nanoparticles. 3.Increasing the consentration of AgNO3 at 1 N would enhance singnificant synthesis of silver nanoparticles. 4.The optimal consentration of PVP was 8.5*10-3 M.. 5.The ultrasonic irradiation assisted synthesis of silver nanoparticles was apparent high than mechanism stirred.

參考文獻


李曜全,林文印,鄭福田,可控制奈米微粒產生技術開發,2009,第17卷,第2期,勞工安全衛生研究季刊。
廖建勛,奈米材料的發展動態,1998,化工資訊。
Alivisatos, A. P., 1996. Semiconductor clusters, nanocrystals, and quantum dots. Science, 271, 933–937.
Cao, Y. C., Jin, R., Nam, J. M., Thaxton, C. S., Mirkin, C. A., 2003. Raman-Dye-Labeled nanoparticle probes for proteins. J. Am. Chem. Soc., 125, 14676–14677.
El-Sayed, M. A., 2001. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res., 34, 257–64.

延伸閱讀