透過您的圖書館登入
IP:3.135.219.166
  • 學位論文

現行排放源地理資訊系統應用於光學雷達遙測系統之研究

Existing Geographic Information of Sources Used in the Study of the Scanning Radar Remote Sensing System

指導教授 : 許逸群
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


近幾年來環保單位不遺餘力加強空氣污染物的監測與控制,對於空氣品質惡化已獲逐年趨緩之成效。現有光學雷達遙測多採全面掃瞄懸浮微粒排放,若能針對固定污染源獲得精準GPS座標定位排放口位置,利用光學雷達遙測具即時之特性可進行長期監控,並結合Google Earth地理資訊系統快速鎖定污染源,將有利稽查人員進行污染情事之稽查與管制。 本研究利用現有的排放污染源資料庫與Google Earth地理資訊系統進行整合,並援引台灣污染源資料庫(TED4.2版)之工廠製程管道UTM座標,套疊在地理資訊系統Google Earth。篩選臨海、大社及仁武工業區敏感熱區工廠進行現場GPS座標定位後,比對現有排放源區位資料與工廠現場GPS定位資料,研究區域涵蓋臨海工業區51家工廠總共648根煙囪、大社工業區22家工廠122根煙囪、仁武工業區49家工廠49根煙囪及台灣中油股份有限公司煉製事業部高雄煉油廠為59根煙囪。研究顯示部分工廠沿用舊有固定污染源資料庫,並未確實將工廠實際排放管道現況更新。比對排放源區位資料與工廠現場GPS定位結果顯示,管道定位差距遠至28公里,多數排放管道多有數十至數百公尺定位差異。顯示現有之排放汙染源資料庫無法真實呈現並運用在光學雷達遙測上。 另利用光學雷達遙測進行全域掃描,發現到19處熱區,其中涵蓋一個鋼鐵廠、石化廠以及煉油廠為這工業區可疑懸浮污染源,並利用GPS進入工廠現場定位27處排放管道來進行光學雷達熱區之遙測,結果顯示出煉油廠排放管道P018、P017單日最高濃度分別為17.5及33.9 mg/m3,鋼鐵廠排放管道PC64、PC83及PC33,單日最高濃度分別為64.1 mg/m3、57.1 mg/m3、76.5 mg/m3。

並列摘要


In recent years, the environmental protection units have continuously strengthened air pollutant monitoring and control, thus are able to slow down the deterioration of air quality. The existing optical radar remote sensing can scan the emission of suspended particles thoroughly. Thus, locating the stationary pollution sources by GPS, using the optical radar remote sensing for real-time and long-term monitoring, and using the geographic information system, Google Earth, to lock in the pollution sources can allow inspectors to check and control pollution conveniently. This study integrated the existing pollution source database with Google Earth, and substituted the factory process channel UTM coordinates of Taiwan pollution source database (TED4.2 version) in Google Earth. The sensitive hot zone factories of Linhai, Dashe and Renwu industrial parks were selected and located by GPS onsite. The existing emission source zone data were compared with the onsite GPS location data of factories. The research area covered 51 factories with 648 chimneys in Linhai industrial park, 22 factories with 122 chimneys in Dashe industrial park, 49 factories with 49 chimneys in Renwu industrial park, and 59 chimneys of China Petroleum Corp.’s Kaohsiung Refinery. The results showed that some factories continue to use the existing stationary pollution source database, and have not updated the existing circumstances of emission pipes. According to the comparison between the emission source zone data and the onsite GPS location results of factories, the difference in pipeline positioning is as large as 28 km, and most of emission pipes have a location error of tens to hundreds of meters. Moreover, the pollutant emission source database cannot be presented truthfully or applied to optical radar remote sensing. The optical radar remote sensing was used for global scanning, and 19 hot zones were found, including a steel plant, a petrochemical plant and a refinery which are suspicious suspended pollution sources in this industrial park. GPS was used in plants to locate 27 emission pipes for optical radar remote sensing of hot zones. The results showed that the daily maximum concentration of emission pipes P018 and P017 of the refinery is 17.5 and 33.9 mg/m3 respectively, and the daily maximum concentration of emission pipes PC64, PC83 and PC33 of the steel plant is 64.1mg/m3, 57.1mg/m3 and 76.5mg/m3 respectively.

參考文獻


[1] 陳冠宇,“應用地理資訊系統與因子分析方法於地下水補注潛勢評估─以濁水溪沖積扇為例”,碩士論文,國立交通大學,2009年。
[2] 張幃杰,“地理資訊系統於海洋油污染岸際防治應用之研究-以台南縣海岸地區為例”,碩士論文,國立台北科技大學,2008年。
[3] S. S. Jensen, “Mapping Human Exposure to Traffic Air Pollution Using GIS, Joutnal of Hazardous,” Matreials 61, 1998, pp.385~392.
[4] S. Sengupta, R.S. Patil and P. Venkatachalam, “Assessment of Population Exposure and Risk Zones due to Air Pollution Using the Geographical Information System,” Comput., Environ. And Urban System, Vol. 20, No. 3, 1996, pp.191~199.
[5] X. Wang, and B. Stauffer, “App;ication of GIS for Environmental Impact Analysis in a Traffic Relief Study,” Comput., Environ. And Urban Systems, 221, 1997, pp.169~174.

延伸閱讀