透過您的圖書館登入
IP:18.118.144.69
  • 學位論文

結合共光程外差干涉術及表面電漿技術量測水中移動的氣泡數目

Using The Common-Path Heterodyne Interferometry and A SPR Angular Sensor to Measure The Number of Bubbles in Water

指導教授 : 邱銘宏
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本文主要利用兩個聲光調制器(Acousto-Optic Modulator, AOM)來產生一外差光源,再配合表面電漿共振(Surface plasmon resonance, SPR)技術來檢測出水中的氣泡數目。 當光束在水中接觸到氣泡時,會因折射率的不同而造成光束偏離共振角,使得相位產生急遽的變化,而此相位變化經光偵測器(Photodetector)擷取再由鎖相放大器(Lock-In Amplifier, SR830)來解析相位,最後再把信號輸出至計數器上來完成氣泡數目的檢測。 最後,在實際量測氣泡時平均相對誤差為0.28%~2.29%。在模擬氣泡速度為2 時,可量測到的最小直徑為0.2 的氣泡;在模擬氣泡速度為60 時,可量測到的最小直徑為0.6 的氣泡。

並列摘要


In this paper, we use two acousto-optic modulators (AOM) with a laser to produce a common-path heterodyne light source. This phase detection technique combines with a surface plasmon resonance (SPR) sensor is used to detect the number of bubbles in water. When a bubble exposed to light in water, the light deviates from the resonant angle caused by the bubble to change the phase largely in the p-polarization. From the phase change, we should count the bubble 's number at a cross section in read-time. Finally, in the actual measurements of bubbles, average relative error is 0.28% - 2.292%. When the speed of water is 2.0 , the measurable minimum diameter of bubble is 0.2 ; As the speed is 60 , the measurable minimum diameter of bubble is 0.6 .

參考文獻


1.R. W. Wood, “On remarkable case of uneven distribution of light in a
2.U. Fano, “The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves onMetallic Surfaces (Sommerfeld's Waves),” J. Opt. Soc. Am., 31, No. 3, 213-222 (1941).
3.L. Rayleigh, “On the Dynamical Theory of Gratings,” Proceedings of the Royal Society of London, 79, No. 532, 399-416 (1907).
4.A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys, 216, 398-410 (1968).
5.E. Kretchmann, “Diebestimmung optischer Konstanten von Metallen durch Auregung von Oberflachenplasmaschwingungen,” Z. Phys, 241, 313-324 (1971).

延伸閱讀