透過您的圖書館登入
IP:18.117.81.240
  • 學位論文

無電鍍銅於石墨烯之研究

Study of Electroless Cu Plating on Graphene

指導教授 : 謝淑惠
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本實驗利用修飾Hummers法將天然石墨製備氧化石墨(Graphite Oxide,GO),再以硼氫化鈉還原成石墨烯(reduce grapheme oxide,rGO),並於石墨烯基材上以無電鍍銅形成銅/石墨烯複合材料探討無電鍍參數對無電鍍銅析出物的影響,得到製備奈米Cu2O/Graphene的條件。 從X光繞射光譜儀(XRD)分析可知天然石墨氧化後C軸平面間距由0.336nm增加至0.781nm,硼氫化鈉還原後C軸平面峰消失,為非晶的無序排列。另外以X-射線光電子能譜儀(XPS)分析碳氧原子比,發現具有極高的碳氧原子比,與傅立葉轉換紅外光分析(FT-IR)分析含氧官能基相比,證實含有含氧官能基,可能氧化不完全,造成碳氧比例很高;還原後XPS及FT-IR含氧官能基減少,證明GO部分含氧官能基已被移除。 無電鍍銅參數有:鍍液溫度、鍍液時間、還原劑量、鍍液pH及反應後加入冰水降低反應速率。實驗中發現在pH13時會產生Cu及Cu2O結晶相,隨溫度增加Cu2O(111)強度增加、Cu(111)強度下降。在低pH值為非晶相,且不隨溫度影響依然產生非晶相。隨無電鍍時間增加,pH13析出顆粒尺寸增加且產生團聚。在無電鍍反應時間到達後加入冰水及還原劑量減少,會降低析出顆粒尺寸粒徑,得到奈米尺寸顆粒。Cu2O顆粒形貌會隨優選生長方向速率的快慢而改變,Cu顆粒形貌則以球狀和長條狀為主。 利用無電鍍銅沉積Cu2O/Graphene的最佳參數為pH值=13、還原劑甲醛量0.5mL、析鍍溫度30℃,析鍍時間30秒,反應完成後加入冰水冷卻降低反應速率,可得到形貌為立方體且為20nm尺寸的Cu2O。從FT-IR在波長513.3cm-1具有Cu-O官能基,XPS Cu2p能譜分析得知在931.96eV及951.8eV為Cu+峰,由此可證明Cu2O吸附在石墨烯上。此最佳參數也可用於矽晶片上,從SEM看出析出物分布均勻。 利用Cu2O催化特性產氫,發現以最佳參數無電鍍Cu2O在商用石墨烯上,在短時間產氫產量最高,在五分鐘時可產出33mL氫,而在自製石墨烯上以最佳參數無電鍍Cu2O可產出98mL氫氣。

並列摘要


Graphene owns high specific surface area, large surface to volume ratio and high stability and is a suitable catalyst support. Electroless plating is a low cost and easy method to deposit nano-metals on substrate. In this study, Graphene(reduced graphene oxide, rGO)was fabricated by using Sodium borohydride to reduce Graphene oxide(GO)which was prepared from natural graphite by using modified Hummers method, and then went through electroless Copper plating to form nano-composite material. The effect of electroless Copper parameters on graphene were investigated. The optimum conditions of electroless Copper plating to form semiconductor Cu2O nanoparticles on graphene and its hydrogen generation effect were studied. Electroless Copper parameters contain plating temperature, plating time, concentration of reductant, pH value and using ice water to inhibit reaction. The XRD results show clusters of Cu and Cu2O crystals deposited on rGO after electroless Copper plating at pH 13, and the intensity of Cu2O(111)increases with increasing temperature, but Cu(111)decreases. Half concentration of reductant and ice water were used to inhibit electroless Copper reaction, to deposit fine and uniform Cu and Cu2O particles on rGO. The SEM and TEM morphology of Cu2O particles are different and depend on the growth rate of preferred orientation, but SEM and TEM morphology of Cu particles are lot of ball shape or long shape. The optimum conditions to deposit Cu2O semiconductor on substrate including commercial graphene, rGO and Si sheet by using electroless Copper plating are pH 13, 0.5mL/L methanol reductant, 30℃, plating for 30seconds, and using ice water to stop reaction. Among them, square Cu2O semiconductor of 20 nm size could be uniformly deposited on rGO, and which perform the best Hydrogen generation, there is 98 ml hydrogen product at 5 minutes, if using commercial graphene as substrate, there is 33 ml hydrogen product at 5 minutes .

參考文獻


[49]黃暄益,「奈米粒子之精準形狀控制合成及其不同晶面所展現之性質」,化學,71卷(2)(2013),103-110。
[72]陳得勝,「奈米鐵鎳磷/石墨烯複合材料之製備」,國立虎尾科技大學材料科學與綠色能源工程研究所碩士論文(2013),p38。
[1]蔡承翰,「添加界面劑對電鍍Cu2O模表面結構與特性之影響」,私立大同大學材料工程研究所碩士論文(2009),p9,15。
[2] C H. Kuo, M H. Huang, “Morphologically controlled synthesis of Cu2O nanocrystals and their properties”, Science Direct,5(2010),106-116.
[3] Chao Xu ,Xin Wang, Lichun Yang , Yuping Wu, “Fabrication of a graphene–cuprous oxide composite”, Journal of Solid State Chemistry ,182(2009), 2486–2490.

被引用紀錄


Lee, Y. C. (2014). 巴氏量表-補充量表之發展暨應用於中風病人之心理計量特性驗證 [doctoral dissertation, National Taiwan University]. Airiti Library. https://doi.org/10.6342/NTU.2014.00258

延伸閱讀