透過您的圖書館登入
IP:13.58.137.218
  • 學位論文

超音波連續滾焊之變幅桿振動特性模擬與最佳化設計

Vibration Characteristics Simulation and Optimized Design of the Horn of Ultrasonic Roll Welding

指導教授 : 謝文祥
共同指導教授 : 許坤明(Kuen-Ming Shu)
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


太陽能電池是藉由基板表面上的鋁條來導電,本文所研究的即是可焊接導電鋁條於太陽能板上的超音波變幅桿與工具,變幅桿的用途在於將位移振幅放大,連接於變幅桿前端的工具則是依照用途所設計。超音波滾焊採用的工具為便於滾動之圓盤狀設計,在設計中最重要的莫過於圓盤外環振幅是否符合需求,圓盤外環振幅會隨著變幅桿的增益比而改變,其次是圓盤與工具的共振頻率是否與研究中所採用的音波產生器一致,且本研究所設計的是一種縱向振動變幅桿耦合彎曲振動圓盤,這種縱彎複合振動模式存在極其複雜的交變應力,避免應力集中也是必須考慮的問題,故變幅桿與圓盤工具使其最佳化是有必要的。研究方法是以理論公式為基礎,採用ANSYS有限元素分析軟體依照設計需求參數化模型,將此參數化模型做為初始設計,分別進行模態分析與簡諧分析,得到變幅桿的縱向模態與圓盤的彎曲模態,測得共振頻率、振幅放大率與應力分布等,之後以隨機搜尋法結合全因子實驗法與子問題逼近法得到最佳化模型,最後將最佳化後的超音波變幅桿耦合圓盤工具予以製造,以頻率量測儀器量測整體之自然頻率,若符合35kHz才裝配到超音波振動系統上激振,同時使用位移量測儀器量測圓盤外環振幅是否達到需求的5~12μm,驗證ANSYS最佳化模擬值之正確性。

並列摘要


Solar cell uses aluminum bar on the surface of base plate to conduct electricity, and what this paper studies is ultrasonic horn and tool that can weld electrically-conducting aluminum bar onto solar panel. Horn is used for magnifying displacement amplitude; tools connected at the front end of horn are designed according to purposes. Ultrasonic roll welding adopts discoid tool convenient for rolling. During designing, the most important thing is whether the vibration amplitude of outer ring satisfies demands. Outer ring amplitude varies along with changes in gain ratio of the horn. The second important is whether the resonance frequency of disk and tool conforms to ultrasonic generator used in the present study. This study adopts a kind of longitudinal-vibration-horn-coupled flexural vibration disk; in such complex longitudinal-flexural mode exists extremely complicated alternating stress. So, it’s necessary to consider how to avoid stress concentration, and the optimization of horn and discoid tool becomes an essential. Research method is based on theoretical formula, and utilizes ANSYS (a kind of finite element analysis software) to construct a parametric model in accordance with design demands. Modal analysis and harmonic analysis are conducted with this parametric model as initial design, so as to obtain longitudinal mode of the horn and flexural mode of the disk as well as measure resonance frequency, amplitude amplification and stress distribution. Then, optimization model is obtained through combining random search with full-factorial experiments and sub-problem approximatioss. Finally, manufacture the optimized ultrasonic-horn-coupled discoid tool, and use frequency measuring instrument to measure natural frequency of the whole. Ultrasonic vibration system can be equipped with this tool only if the natural frequency is 35kHz. At the same time, displacement measuring instrument is used to measure whether the outer ring amplitude of the disk reaches 5~12μm, ant thus to validate the correctness of optimized simulation value of ANSYS.

參考文獻


[3]馬嘉駿,迴轉式超音波輔助硬脆材料銑削及工具設計,碩士論文,國立臺北科技
Design of Acoustic Horns for Ultrasonic Machining Using
Finite-element Analysis,”Journal of Materials Processing
[2]Hansen H.H.,“Optimal Design of an Ultrasonic
Ultrasonic Machining Using the Finite Element Method,”The

被引用紀錄


羅家麒(2014)。超音波輔助拋光研磨機構之研究〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://doi.org/10.6827/NFU.2014.00055
顏豪伸(2013)。超音波熔接聚四氟乙烯及其加工機之研發〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://doi.org/10.6827/NFU.2013.00129
蘇建豪(2012)。膨鬆食材之超音波切割刀具研發〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://doi.org/10.6827/NFU.2012.00112

延伸閱讀