透過您的圖書館登入
IP:3.128.197.164
  • 學位論文

開發廣波段堆疊氮化矽抗反射層應用於網印式單晶矽太陽能電池之光電特性研究

Development of Broadband Stacked Silicon Nitride Antireflection Coatings for Screen-Printed Monocrystalline Silicon Solar Cells Applications

指導教授 : 鄭錦隆
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究開發廣波段堆疊氮化矽抗反射層應用於網印式單晶矽太陽能電池之光電特性研究,因為表面的低反射率可改善載子的產生率,且堆疊多層的抗反射層可製作廣波段的抗反射層,另一方面,開路電壓可藉由降低表面復合效應而提高,因此本研究將藉由電漿增強型化學氣相沉積技術探討氮化矽組成比及其堆疊效應對於表面反射及鈍化特性的影響,進一步改善網印式單晶矽太陽能電池之光電特性,其中,組成比的調配參數包含矽甲烷、氨氣的氣體流量及氮化矽的厚度,堆疊效應的調配參數包含二至四層的堆疊層、不同組成比的氮化矽堆疊層及堆疊層的各層厚度調變等,藉由n & k 及C-V 量測評估氮化矽的折射率、厚度、固定氧化層電荷及介面陷阱電荷,最後經由網印式單晶矽太陽能電池的製作,評估其對光電轉換效率的影響。 實驗結果顯示,隨著矽甲烷流量的增加,氮化矽與矽介面的陷阱電荷會下降而折射率會上升,另一方面,隨著氨氣的氣體流量增加,正氧化層電荷會增加,當SiH4/(SiH4+NH3)為0.45 所製作出來的氮化矽抗反射層,其太陽能電池的光電轉換效率較佳,當使用雙層堆疊氮化矽抗反射層時,下層採用SiH4/(SiH4+NH3)為0.63 搭配上層採用SiH4/(SiH4+NH3)為0.09 所製作出來的氮化矽堆疊抗反射層有較佳的元件光電轉換效率15.8%,當使用三層堆疊氮化矽抗反射層時,下層採用SiH4/(SiH4+NH3)為0.63 搭配上層採用SiH4/(SiH4+NH3)為0.09 及中間層的SiH4/(SiH4+NH3)為0.54 所製作出來的氮化矽堆疊抗反射層有較佳的元件光電轉換效率16.7%,當使用四層堆疊氮化矽抗反射層時,最下層採用SiH4/(SiH4+NH3)為0.15,第二層搭採用SiH4/(SiH4+NH3)為0.11,搭配第三層採用SiH4/(SiH4+NH3)為0.09 及最上層的SiH4/(SiH4+NH3)為0.07 所製作出來的氮化矽堆疊抗反射層有較佳的元件光電轉換效率16.4%。

並列摘要


In this thesis, broadband stacked silicon nitride (SiNx) antireflection coatings were developed for screen-printed monocrystalline silicon solar cells (SPMSSCs) applications. The carrier generation rate can be enhanced by the reduction of the reflection. Moreover, the broadband antireflection can be presented by stacked antireflection coating. Furthermore, the open-circuit voltage can be improved by decreasing the surface recombination. Thus, the effects of the SiNx composition and stacked films formed by plasma enhanced chemical-vapor-deposition (PECVD) on photovoltaic characteristics of the SPMSSCs were investigated. The parameters of the composition effects, including flow rate of SiH4 and NH3, the thickness of the SiNx, and the SiNx stacked films ranged from two to four layers, were presented. The refraction, the thickness, the fixed oxide charge, and the interface trap charge in SiNx stacked films were evaluated by the n&k and the C-V measurement. The conversion efficiencies (CEs) of the SPMSSCs were also demonstrated. The results indicate that the interface trap density between SiNx/silicon interface decrease with increasing the flow rate of the SiH4. However, the refraction of SiNx increase with increasing the flow rate of the SiH4. Moreover, the positive fixed oxide charge increase with increasing the flow rate of the NH3. A better CE of the SPMSSCs was achieved by the SiH4/(SiH4+NH3) at 0.45 for one layer SiNx. A CE of 15.8% was demonstrated by the two layers stacked films with combined SiH4/(SiH4+NH3) at 0.63 for bottom layer and SiH4/(SiH4+NH3) at 0.09 for top layer. A CE of 16.7% was demonstrated by the three layers stacked films with combined SiH4/(SiH4+NH3) at 0.63 for bottom layer, SiH4/(SiH4+NH3) at 0.54 for intermediary layer and SiH4/(SiH4+NH3) at 0.09 for top layer. A CE of 16.4% was demonstrated by the four layers stacked films with combined SiH4/(SiH4+NH3) at 0.15 for bottom layer, SiH4/(SiH4+NH3) at 0.11 for second layer, SiH4/(SiH4+NH3) at 0.07 for third layer and SiH4/(SiH4+NH3) at 0.07 for top layer.

參考文獻


[1] P. K. Basu, Z. Hameiri, D. Sarangi, J. Cunnusamy, E. Carmona and M. B. Boreland, “18.7% Efficient inline-diffused screen-printed silicon wafer solar cells with deep homogeneous emitter etch-back,” Solar Energy Materials & Solar Cells, 117, pp. 412-420, 2013.
[2] S. Wu, L. Li, W. Wang, D. Yu, W. Liu, X. Wu and F. Zhang, “Study on the front contact mechanism of screen-printed multi-crystalline silicon solar cells,” Solar Energy Materials & Solar Cells, 141, pp. 80-86, 2015.
[3] Z. Fang, “Characterization of MOCVD-grown non-stoichiometric SiNx,” Surface & Coatings Technology, 202, pp. 4198-4203, 2008.
[4] R. Bazinette, J. F. Lelièvre, L. Gaudy and F. Massinesa, “Influence of the discharge mode on the optical and passivation properties of SiNx:H deposited by PECVD at atmospheric pressure,” Energy Procedia, 92, pp. 309-316, 2016.
[5] A. Pflug , M. Höfer, T. Harig, M. Armgardt, C. Britze, M. Siemers, T. Melzig and L. Schäfer, “Modeling of gas flow and deposition profile in HWCVD processes,” Thin Solid Films, 595, pp. 266-271, 2015.

延伸閱讀