透過您的圖書館登入
IP:3.134.104.173
  • 學位論文

各種應力型氮化矽及高能隙高載子移動率材料於單晶矽基太陽能電池之特性研究

Study of Various Stressed Silicon Nitrides and High Carrier Mobility/Bandgap Material on Characteristics of Monocrystalline Silicon-Based Solar Cells

指導教授 : 鄭錦隆
共同指導教授 : 劉建惟(Chien-Wei Liu)
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文利用電漿增強式化學氣相沈積法沉積各種應力型氮化矽(SiNx),並應用於單晶矽基太陽能電池元件之抗反射層,調控參數包含製程射頻功率、壓力、基板溫度及[SiH4/(SiH4+NH3)]氣體流量比率;實驗結果顯示,對内應力結構而言,則以射頻功率與[SiH4/(SiH4+NH3)]氣體流量比率影響最直接;藉由調控拉伸應力值為+3 ~+780 MPa,非均勻度在5%以下,折射率2.01左右,可使得單晶矽基太陽能電池的效率增加約8 ~ 33個百分比。最後,以最佳參數沉積的應力型氮化矽抗反射層,得到最高效率為10.1%。 另外,利用化學氣相沉積法搭配濺鍍SiCx混成Si1-xGexCy及應變SiNx/Si1-xGexCy高能隙高移動率射極層。藉由改變不同的Si2H6及GeH4沈積流量、擴散時間及溫度、不同SiNx沈積條件控制不同應力以及不同厚度SiCx等條件,成長高品質混成高能隙材料,並應用於太陽能電池元件之射極層。改善太陽能電池元件特性,最主要的三大重點為(1)降低表面復合(2)提高並聯電阻(降低製造缺陷及設計多能隙材料)(3)降低接觸電阻;為了達成這些目標,本論文發展Al/SiNx/n+-Si1-xGexCy/p-Si 異質接面太陽能電池,研究結果顯示搭配SiNx抗反射層之拉伸應力,對不同厚度與組成比的Si1-xGexCy,其效率可增加16個百分比。

並列摘要


This study aimed to manufacture various stressed SiNx as anti-reflection coatings (ARC) of the monocrystalline silicon-based solar cells (MSBSC) using plasma-enhanced chemical-vapor-deposition (PECVD). The modulated parameters include radio frequency(RF)power, pressure, substrate temperature, and the [SiH4/(SiH4+NH3)] flow rate. The results show that the internal stressed types were mainly affected by the RF power and the [SiH4/(SiH4+NH3)] flow rate. The conversion efficiency (CE) of the MSBSC can be improved around 8~33% using the tensile stressed SiNx with the +3 ~+780 MPa, the non-uniformity below 5% and the refractive index of 2.01. Finally, the CE of the MSBSC can be achieved 10.1% using the optimized stressed SiNx as the ARC of the MSBSC. Moreover, in this thesis, the high carrier mobility and band-gap emitters (HCMBE) directly on the Si(100) surface have been developed by means of the chemical-vapor-deposition (CVD) and the sputter. By modulated the various ambient flow, doping temperature and time, various SiNx deposition conditions, the HCMBE can be achieved for the silicon heterojunction solar cell (SHSC) devices applications. The continuous improving the solar cell devices performances are needed for low surface recombination, high shunt resistance, and low series resistance. To achieve this goal, the HCMBE was used to lower the surface and bulk recombination. The SHSC devices have been fabricated using various HCMBE as the emitters of the SHSCs with the Al/SiNx/n+-Si1-xGexCy/p-Si stacked structure. The results show that the CE with the 16% improvement can be achieved by the optimized SiNx/n+-Si1-xGexCy stacked structure.

參考文獻


[1] 楊德仁編著,太陽能電池材料,五南圖書出版股份有限公司,2008, 06。
[2] Martin A. Green et al., Prog. Photovolt: Res. Appl. 2007; 15:425 – 430。
[3] 黃惠良等,太陽電池,五南圖書出版股份有限公司,2008,11,21。
[4] 黃忠仁等,矽基太陽能電池表面微結構相關製程研究,機械工業雜誌294期 P.79-80,2007.09。
[5] http://pvcdrom.pveducation.org/

延伸閱讀