透過您的圖書館登入
IP:13.58.39.23
  • 學位論文

不同金屬電極應用於陽極接合速度之研究

Research on speed of anodic bonding by applying different metal electrodes

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


微機電系統(micro-electro-mechanical systems, MEMS)晶片封裝技術已是企業界廣泛使用的製程技術之一,而陽極接合技術更是目前封裝製程中相當倚重的一種無介質接合技術。主要藉由在金屬陽極與玻璃間產生一靜電場,利用離子鍵結的方式達到高強度的接合目的。 藉由金屬材料的導電、熱傳特性及驅動電壓波形的趨勢,提升接合的強度與速度。故本研究主要針對不同金屬材質(上電極、下電極加熱板)及脈衝式電壓,希望能有效提升接合效率、降低所需電壓與溫度。實驗結果證實,於大氣環境下進行不同金屬電極接合時,固定加熱板溫度400 ℃、電壓300-900 V條件下,使用試片面積20 × 20 mm2,鋁材較銅材及不銹鋼材所獲得之接合品質佳;在固定溫度400 ℃、電壓700 V、接合時間90秒情形下,使用鋁電極的接合面積達45.11 ?,相較於銅電極的接合面積33.66 ?佳,主要影響原因為銅置於一加熱環境約150℃以上時,產生氧化反應速度快於鋁材,造成電流值的增大,因而影響接合速度。使用脈衝式電壓供電時,在固定溫度400 ℃、電壓500 V、總接合時間2分鐘,脈衝供電週期為10 s且high-low各5秒情況下,接合面積可達18.87。

關鍵字

無資料

並列摘要


The chip package technology of MEMS (micro-electro-mechanical systems, MEMS) is wildly used in commercial fabrication process, and anodic bonding plays an important role in mediumless joint technology of current package fabrication process. By means of an electrostatic field generated between metal and glass, the use of ion bond can achieve high bonding strength. Was focused on different metallic material (the upper electrode, the under heating electrode) and driving voltage in order to rise the bonding efficiency, lower the voltage and temperature of need by the conductive material, the heat transfer characteristic, the trend of driving voltage and its wave form. Experiments show that Aluminum performs better than copper and stainless steel in the condition of heating electrode of 400 ℃, 300-900 V and use a sampling area about 20 × 20 mm2. Under the condition of fixed temperature of 400 ℃, 700 V, and bonding time of 90 s, the bonding area of aluminum electrode reaches 45.11 ?; the bonding area of copper electrode only reaches 33.66 ?. The main reason is because cooper oxidize faster than aluminum, thus resulting in greater current causing slower bonding ratio when the heating temperature is higher than 150 ℃. in the condition of fixed temperature of 400 ℃, 500 V, total bonding time of 2 min, pulse voltage power cycle of 10s, high-low per 5 sec, applying pulse voltage can achieve bonding area of 18.87.

並列關鍵字

無資料

參考文獻


4.F. Secco d’Aragona, T. Iwamoto, H.-D. C. Chiou, and A. Mizza, ECS Meeting Abtracts, MA 97-2, 2052 (1997).
7.S. Shoji, H. Kikuchi and H. Torigoe, “Low-temperature anodic bonding using lithium aluminosilicate-β-quartz glass ceramic”, Sensors and Actuators, A64, 95-100 (1998).
9.M. Despont, H. Gross, F. Arrouy, C. Stebler and U. Staufer, “Fabrication of a silicon-Pyrex-silicon stack by a.c. anodic bonding”, Sensors and Actuators, A55, pp.219-224 (1996).
10.K. B. Albaugh, “Rate processer during anodic bonding”, J. Am. Ceram. Soc, V75, pp.2644 (1992).
11.M. A. Morsy, K. Ikenchi, M. Ushio and H. Abe, “Mechanism of enlargement of intimately contacted area in anodic bonding of kovar alloy to borosilicate glass”, Material Transaction JIM, V37, pp.1511 (1996).

延伸閱讀