透過您的圖書館登入
IP:18.224.39.32
  • 學位論文

桌上型生醫快速原型系統之開發與單甲氧基聚乙二醇-聚己內酯-單甲氧基聚乙二醇聚合物支架之製作

Development of a Desktop Bio-Rapid Prototyping System for Fabricating mPEG-PCL-mPEG Scaffolds

指導教授 : 江卓培
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文研究之目的欲製作孔洞大小可控化之mPEG-PCL-mPEG支架以供應用於組織工程可行性之評估。本研究的方法是先開發桌上型氣壓輔助式生醫快速原型系統,再利用其控制介面建構所需之路徑規劃及最佳化加工支架所需之製程參數。由於mPEG具有親水性、但PCL具有疏水性之特點,故所合成之高分子聚合物是以mPEG為主,所設計之理論分子量分別為2200與10000。mPEG-PCL-mPEG聚合物材料合成的結果發現真實分子量均高於理論分子量,且低分子量高分子因黏度太低而無法適用於所開發出之生醫快速原型系統來製作支架,故以理論分子量為10000之聚合物製作不同孔徑大小的多孔性支架,孔徑大小可控制於50~500μm範圍製作,其形狀可分為單一圓形、方形及複合形(包含方形與圓形)。再者,為了達到高抗壓強度的目的,將所使用之材料與氫氧基磷灰石(HA)以2:1的比例調配後、探討其黏度與機械性質的差異。所製作出來的支架樣本亦進行體外骨母細胞培養,探討細胞的附著、增生、與生物相容性的測試。實驗結果證明,所開發的生醫快速原型系統可以製作支架樣本,所合成之聚合物確實具有生物相容性,加入HA後之複合高分子聚合物可提升支架的抗壓強度。

並列摘要


The aims of this study are to develop a desktop bio-rapid prototyping system based on the principle of air-pressure assisted extrusion and to synthesize mPEG-PCL-mPEG copolymer for fabricating scaffold with well-controlled pore sizes. The theoretical molecular weight of copolymer are 2200 and 10000. It was found that the viscosity of copolymer, the theoretical molecular weight of 2200, is too low to extrude from the nozzle under an air-pressure of 0.3 MPa. Therefore, the scaffolds with varying pore sizes, from 50 to 500 µm, are fabricated using the theoretical molecular weight of 10000. The shapes of final fabricated scaffolds are circle, rectangular and combination of both. It was found that the average compressive strength of fabricated scaffolds, made of mPEG-PCL-mPEG copolymer, is 9.2 MPa. A biomaterial, Hydroxyapatite (HA), is added into synthesized copolymer as a composite copolymer to enhance the compressive strength. The fabricated scaffolds are verified its biocompatibility by culturing the osseoblast cell. As a result, the developed bio-rapid prototyping system can fabricate scaffold successfully. The average compressive stress of scaffold made of composite copolymer is double higher than that of scaffold made of copolymer. In addition, the synthesized material is proved to be biocompatible.

參考文獻


2 Hutmacher, D.W., Schantz, T., Zein,I. et. al., “Mechanical Properties and Cell Cultural Response of Polycaprolactone Scaffolds Designed and Fabricated via Fused Deposition Modeling”, Journal of Biomedical Materials Research, vol. 55, 2, pp. 203-216, 2001.
3 Kalita, S.J. and Bosea, S., “Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling”, Materials Science and Engineering C 23, pp. 611- 620 , 2003.
4 Cooke, M.N., Fisher, J.P., Dean, D. et al.,“Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth”, Journal of Biomedical Materials Research, vol. 64B, Issue 2 , pp. 65-69, 2002.
5 Lee, J.W., Lan, P.X., Kim, B., Lim, G., Cho, D.W .(2007) “3D scaffold fabrication with PPF/DEF using micro-stereolithography”.
6 Lam ,C.X.F., Mo,X.M. and Teoh ,S.H., “Scaffold development using 3D printing with a starch-based polymer”, Materials Science and Engineering C 20, pp. 49–56, 2002.

被引用紀錄


許智越(2012)。人工膝關節材料之表面改質與磨潤研究〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://doi.org/10.6827/NFU.2012.00196
黃宇滕(2014)。熱擠製式三維列印技術製作骨組織工程支架與其骨髓間葉幹細胞體外反應之研究〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0028-2808201417154700

延伸閱讀