肺癌在近年來已經成為台灣人主要死因之一。根據了解,癌症形成的原因可能與抑癌蛋白失去功能或致癌蛋白獲得功能有密切的關係,而癌症是一個分為多階段發展的疾病,因此初期與晚期的癌症相關基因可能有很大的不同,透過對肺癌樣本的分類來預測不同階段肺癌的治療藥物,是本論文的主要目的。 在本研究中,利用eBayes個別分析多組肺癌微陣列晶片的基因表達量數據,獲得與癌症有關的差異性表達基因並根據BioGrid資料庫的數據建立肺癌的上調與下調蛋白質交互作用網路,接著利用圖論的方法在蛋白質交互作用網路中找尋密集的區域,選出與癌症具高度相關的蛋白基因與Connectivity Map資料庫進行比對,以找到可能治療癌症的潛在藥物。不同的實驗組會得到不同的蛋白基因及藥物,利用整合分析方法(Meta-Analysis)來整合多組研究得到的結果。最後藥物將藉由MTT檢測與克隆實驗來進行檢驗。
Lung cancer is the leading cause of death in Taiwan. It is known that the cause of cancer is relate to the gain of function of an oncoprotein or the loss of function of a tumor suppressor protein. Cancer is a multistage progressive disease, early- and late-stage CAG(cancer-associated genes) are potentially very different. The purpose of this thesis is to predict therapeutic drugs for early- and late-stage lung cancer by classify the samples of lung cancer. By using eBayes to analyze gene expression data from multi-lung cancer microarray chips, obtain cancer-related DEGs(differentially expressed genes). We built the up-regulated and down-regulated PPI(protein-protein interaction) network. Then, we using graph theory to analyze PPI network, finding the dense region in PPI network, and the highly cancer-related gene signatures were submitted to Connectivity Map to finding potential drugs for cancer. The DEGs and potential drugs we obtained from different microarray are not the same, we using meta-analysis to integrate the results from different datasets. Finally, the predicted drugs are supported by MTT assay and clonogenic assay.