透過您的圖書館登入
IP:18.219.40.177
  • 學位論文

使用整合分析方法結合微陣列資料預測非微小型細胞肺癌之治療藥物

Therapeutic Drug Prediction for Non-Small Cell Lung Cancer by using Meta-Analysis of Microarray Data

指導教授 : 黃建宏
共同指導教授 : 吳家樂
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


肺癌在近年來已經成為台灣人主要死因之一。根據了解,癌症形成的原因可能與抑癌蛋白失去功能或致癌蛋白獲得功能有密切的關係,而癌症是一個分為多階段發展的疾病,因此初期與晚期的癌症相關基因可能有很大的不同,透過對肺癌樣本的分類來預測不同階段肺癌的治療藥物,是本論文的主要目的。 在本研究中,利用eBayes個別分析多組肺癌微陣列晶片的基因表達量數據,獲得與癌症有關的差異性表達基因並根據BioGrid資料庫的數據建立肺癌的上調與下調蛋白質交互作用網路,接著利用圖論的方法在蛋白質交互作用網路中找尋密集的區域,選出與癌症具高度相關的蛋白基因與Connectivity Map資料庫進行比對,以找到可能治療癌症的潛在藥物。不同的實驗組會得到不同的蛋白基因及藥物,利用整合分析方法(Meta-Analysis)來整合多組研究得到的結果。最後藥物將藉由MTT檢測與克隆實驗來進行檢驗。

並列摘要


Lung cancer is the leading cause of death in Taiwan. It is known that the cause of cancer is relate to the gain of function of an oncoprotein or the loss of function of a tumor suppressor protein. Cancer is a multistage progressive disease, early- and late-stage CAG(cancer-associated genes) are potentially very different. The purpose of this thesis is to predict therapeutic drugs for early- and late-stage lung cancer by classify the samples of lung cancer. By using eBayes to analyze gene expression data from multi-lung cancer microarray chips, obtain cancer-related DEGs(differentially expressed genes). We built the up-regulated and down-regulated PPI(protein-protein interaction) network. Then, we using graph theory to analyze PPI network, finding the dense region in PPI network, and the highly cancer-related gene signatures were submitted to Connectivity Map to finding potential drugs for cancer. The DEGs and potential drugs we obtained from different microarray are not the same, we using meta-analysis to integrate the results from different datasets. Finally, the predicted drugs are supported by MTT assay and clonogenic assay.

參考文獻


[38] 吳泯祐,2013,“利用生物資訊方法預測治療肺癌之藥物標靶”,國立虎尾科技大學資訊工程系研究所,碩士論文。
[2] Arthur M. Lesk, 2008, Introduction to Bioinformatics, Long-Yuan Li, 2nd, Jeou Chou Book, Taipei.
[3] Z. Wu, Y. Wang, L. Chen, 2013, “Drug repositioning framework by incorporating functional information”, IET Systems Biology, vol. 7, issue 5, pp. 188-194.
[4] F. Iorio, R. Bosotti, E. Scacheri et al., 2010, “Discovery of drug mode of action and drug repositioning from transcriptional responses”, Proceedings of the National Academy of Sciences, vol. 107, no. 33, pp. 14621-14626.
[5] Z. Wu, Y. Wang, L. Chen, 2013, “Network-based drug repositioning”, Molecular BioSystems, vol. 9, no. 6, pp. 1268-1281.

被引用紀錄


劉亦修(2016)。日本蓄音器商會臺灣唱片的閩南語音現象分析:以歌仔戲與流行歌唱片為例〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201603413
林淑琴(2010)。有關地獄之歌仔冊的語言研究及其反映的宗教觀〔碩士論文,國立臺灣師範大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0021-1610201315211238
王瓊枝(2011)。臺灣布袋戲《西遊記》表演文本分析及國小教學應用〔碩士論文,國立臺灣師範大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0021-1610201315231091
林振福(2011)。台灣三處道場以臺語唱誦普門品經咒之語音研究〔碩士論文,國立臺灣師範大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0021-1610201315133461

延伸閱讀