過去聚光型太陽能電池的光學菲涅爾透鏡是使用聚甲基丙烯酸甲酯(PMMA)或聚碳酸酯(Polycarbonate)等材料為主製作而成,但是耐熱性和耐候性受到限制,影嚮發電效率和使用壽命,所以必需找尋適合的材料代替。矽膠(Silicone Gel)材料憑藉耐UV,耐高溫、耐環境等特性,能夠長時間的在嚴苛的環境下使用。 本論文利用光學設計軟體CODE V設計光學非球面菲涅爾透鏡(Fresnel Lens),利用非成像光學模擬軟體LightTools進行光線追跡和光能量分析。光學軟體有優化功能,可以進行最佳化光學非球面菲涅爾透鏡設計,透過光學系統的研究分析和模擬評估,可以降低設計誤差及失敗風險,並可以與實驗結果進行驗證。利用押出成形的方式將玻璃(Glass)和矽膠結合在一起,並對此種複合(Hybrid)的光學菲涅爾透鏡進行研究開發。在實驗當中發現以白板玻璃為基板製成的和矽膠菲涅爾透鏡在紅外光的波長範圍有92%的平均穿透率,而PC材質的平均穿透率只有76%。矽膠菲涅爾透鏡的使用壽命也比一般的塑膠材質高出很多,所以矽膠材料使用在聚光型太陽能集光器上勢必成為未來之最佳選擇。
In the past, the solar cells with optical concentrator always made use of Fresnel lens with polymethyl methacrylate(PMMA) or polycarbonate, but the heat resistance and climax resistance properties are so limited, normally resulting in lower power generation efficiency and shorter lifespan. So finding suitable materials instead is a must. Silicone Gel, with resistance capabilities to UV and high temperature, can be situated in harsh environments for a long time. By using software, CODE V, in optical design of non-spherical Fresnel lens and non-imaging optics simulation software LightTools for ray tracing and analysis of light energy are the focus of this thesis. We can optimize the design of the aspherical Fresnel lens using the preceding software, and the design errors and failures can be reduced/prevented by analysis, simulation, and finally verification through experiment. Extrusion forming fuses glass and silicone gel together, and makes use of this compound Fresnel lens for optical research and development. Whiteboard in the experiment were found to be made of glass substrate and the silicone Fresnel lens in the infrared wavelength range; the average of transmittance is 92%, while the PC material is only 76%. The lifetime of silicone Fresnel lens is longer than that of plastic material, so silicone materials used in solar concentrator is undoubtedly the best choice.