透過您的圖書館登入
IP:3.131.38.219
  • 學位論文

以無電鍍法於陽極氧化鋁模板製備一維Fe-Ni-P和Fe-Co-Ni-P奈米磁性陣列

Fabrication and Magnetic Property of Fe-Ni-P and Fe-Co-Ni-P Nanoarrays by Using Electroless Plating Deposition

指導教授 : 謝淑惠
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究於AAO模板上以無電鍍法製備一維Fe-Ni-P與Fe-Co-Ni-P奈米線陣列,藉由改變鍍液金屬離子的比例、pH值等參數在AAO模板上沉積Fe、Ni、Co、P等元素,形成一維奈米陣列,再經由不同的熱處理溫度觀察磁性質變化。實驗使用X光繞射儀 (XRD)、場發射電子顯微鏡(FE-SEM)、穿透式電子顯微鏡(TEM),震動樣品磁力計(VSM)與四點探針(Four-Point Probe)等儀器分析與觀察一維奈米陣列的微觀結構與磁性質。 氧化鋁模板使用草酸於定電壓40V下製備而成,模板直徑約為50~70nm,厚度為300nm。實驗結果顯示於氧化鋁板製備的Fe-Ni-P與Fe-Co-Ni-P一維奈米陣列的直徑約70nm,長度約300nm。無電鍍Fe-Ni鍍液添加Fe2+ / Ni2+金屬離子比為0.1、0.5和1的情況下,所製備的Fe-Ni-P奈米線其鐵含量隨著Fe2+ / Ni2+比升高而升高,分別為1.55 at%、2.3 at%和3.64 at%。Fe-Ni-P奈米線其水平方向的磁滯曲線,以在Fe2+ / Ni2+ = 1下有著最大的飽和磁化強度,接著是在Fe2+ / Ni2+ = 0.5與Fe2+ / Ni2+ = 0.1。在剩磁比方面也是以在Fe2+ / Ni2+ = 1時析鍍的Fe-Ni-P奈米線最高。隨著Fe-Ni-P奈米線鐵含量的提高,飽和磁化強度和剩磁比也隨之提高。將在Fe2+ / Ni2+ = 1之鍍液所製備之Fe-Ni-P奈米陣列進行400°C、500°C與600°C的退火,發現退火後的飽和磁化強度明顯下降,且剩磁比也比未退火時還要來得低。而Fe-Co-Ni-P奈米線退火前後之磁滯曲線特性與Fe-Ni-P相似,於600°C退火後飽和磁化強度、剩磁比明顯下降。比較Fe-Ni-P與Fe-Co-Ni-P磁性,可發現退火前Fe-Ni-P的飽和磁化強度與剩磁比皆優於Fe-Co-Ni-P。含有1.55 at% - 3.64 at%鐵含量之Fe-Ni-P奈米線不需經任何處理即展現高飽和磁化強度與剩磁比,較Ni-P奈米線具有較優良磁特性。

並列摘要


In this study, the Fe-Ni-P and Fe-Co-Ni-P nanoarrays were fabricated by employing an anodized aluminum oxide (AAO) template in the electroless plating Fe-Ni and Fe-Co-Ni, separately. The experimental parameters contained pH, metal ion molar ratio of plating solution and annealing temperature. The experiments were carried out repeatedly and an X-ray diffractometer (XRD), Field Emission Scanning Electron Microscope (FE-SEM), and Transmission Electron Microscope (TEM) were used to observe the phases, microstructure and chemical content. And the magnetic properties of 1D nanoarrays were investigated by Vibrating Sample Magnetometer (VSM). An AAO template with pores of 50-70 nm was prepared on a Si substrate which had been sputtered a Al film before being anodized at a constant voltage of 40V, with a 0.3M oxalic acid solution at room temperature. The Fe content of Fe-Ni-P nanowires is 1.55, 2.30, and 3.64 at.% by electroless Fe-Ni plating with plating solution contained Fe2+/Ni2+ 0.1, 0.5 and 1, respectively. The magnetic hysteresis curves which were measured with the magnetic field H applied parallel and vertical to the wire axis indicated the Fe-Ni-P nanowires deposited with plating solution contained Fe2+/Ni2+ 1 have the maximum saturation magnetization and remanence ratio, and the saturation magnetization and remanence ratio were in direct proportion to the Fe content of Fe-Ni-P nanowires. Fe-Ni-P and Fe-Ni-Co-P nanowires had high saturation magnetization and remanence ratio without annealing, are better than Ni-P nanowires.

參考文獻


[3] 楊謝樂,2006,「磁性奈米粒子於生物醫學上之應用」,物理雙月刊,Vol.28.
[17] 李世宏,2010,「利用陽極氧化鋁模板在矽基材上成長TixWyO的奈米結構材料」,國立交通大學工學院碩士在職專班半導體材料與製程設備組碩士論文。
[2] T. M. Whitney, J. S. Jiang, P. C. Searson, C. L. Chien, 1993, “Fabrication and Magnetic Properties of Arrays of Metallic Nanowires”, Science ,Vol.261, 1316-1319.
[5] P. Saravanan , S.V.Kamat a, B.Sreedhar, 2012, “ Tailoring the structural and magnetic properties of sol-gel derived Sm–Co nanogranular films”, Journal of Magnetism and Magnetic Materials, Vol.324, pp.1201-1204.
[6] G. Mendoza-Suarez, J.C. Corral-Huacuz, M.E. Contreras-Garcı́a, H. Juarez-Medina, 2001, “ Magnetic properties of BaFe11.6–2xCoxTixO19 particles produced by sol–gel and spray-drying”, Journal of Mag-netism and Magnetic Materials, Vol.234, pp.73-79.

延伸閱讀