本研究主要目的是對車輛的轉向系統,以非圓形齒輪的傳動特性來設計其轉向機構,以期發展出一種完全符合阿克曼轉向原理(Ackermann Steering Principle)的轉向機構。一般車輛在進行轉向時,其轉向之左、右兩前輪的偏轉角度之關係並不是線性關係,而是一對一的非線性函數關係。此種函數關係可由阿克曼轉向原理來推導之。本研究針對阿克曼轉向原理中的函數關係,以非圓形齒輪來設計其轉向機構。非圓形齒輪其節曲線之曲率半徑為一變數,隨著兩齒輪在連心線上的接觸點的位置而變動,兩齒數的轉速比會因此改變。 本研究將提出三種以非圓形齒輪配置,得符合阿克曼轉向原理之轉向系統,第一種配置主要是一非圓形齒輪組並經由控制其中一個齒輪來滿足轉向動作的需求;第二種配置是由三個非圓形齒輪所組成,經由控制位於中間的齒輪同時驅動左右兩個齒輪來完成轉向動作;第三種配置是由四個非圓形齒輪所組成,經由控制位於中間的齒輪同時驅動其餘三個齒輪來完成轉向動作,文中並驗證同一種配置的非圓形齒輪可以是相同的。本文並以Solid-Works繪製其各配置之零件及組合件,再利用COSMOS-Motion進行動作模擬與驗證其可行性。
This thesis discuss a new steering mechanism of vehicle. In order to satisfy the Ackermann steering principle, the steering mechanism applying noncircular gear is designed. When vehicle turns, the relationship is nonlinear between the steering angles of left front wheel and right front wheel. The relation can be derived by Ackermann steering principle. The curvature radius of pitch curve of noncircular gears is variable. The position of contact point of two meshing pitch curve is changed during the rotation. Three types of steering mechanisms applying noncircular gear will be designed in the thesis according to the Ackermann steering principle. The first type is composed by a pair of noncircular gears. The second type is composed by three noncircular gears. The third type is composed by four noncircular gears. The steering motions of all types were controlled by the driving gear to drive other gears at the same time. In this thesis, we prove the noncircular gears are same in the identical kind of steering mechanisms. These parts and assemblies were drawn by Solid-Works, then using COSMOS-Motion of Solid-Works to simulate and check the steering motion.