透過您的圖書館登入
IP:18.117.11.129
  • 學位論文

寬頻低雜訊放大器之射頻晶片設計

RFIC Design of Wideband Low Noise Amplifier

指導教授 : 沈自
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文研究應用於X-Band至Ku-Band之超寬頻低雜訊放大器(Low Noise Amplifier, LNA),電路採用穩懋半導體公司(WIN) 0.15μm pHEMT 製程進行設計,涵蓋的頻率範圍為8GHz到27GHz。本論文總共利用三種架構進行放大器之設計,包括負回授式與共源級電感退化式,以及電流再使用式架構(Current-reused technique)。並對三種放大器之設計進行分析比較。 第一部分為設計一個X-Band的寬頻低雜訊放大器,主要架構為負回授式與共源級電感退化式放大器。其特性為可以提供平坦增益,以及良好的輸入阻抗匹配,並增加了放大器電路的穩定性。此低雜訊放大器所獲得之增益為17.89dB~19.37dB,雜訊值為2.82dB~3.18dB,輸入返回損耗為-15.37dB~-25.14dB,輸出返回損耗為-12.41dB~-13.31dB,反向隔離度為-34.85dB~ -45.64dB。 第二部份主要設計一個可應用於衛星小型地面站(Very Small Aperture Terminal),也就是VSAT系統中之Ku頻段的低雜訊放大器。選用的基本架構為電流再使用式架構。此架構可以提供高增益、降低供應電壓和消耗功率。此低雜訊放大器所獲得之增益為13.8dB ~15.05dB,雜訊值為2.48dB~2.97dBdB,輸入返回損耗為-12.39dB ~ -13.07dB,輸出返回損耗為-10.17dB ~ -10.86dB,反向隔離度為-38dB ~-43.79dB。 最後設計一個K頻段的低雜訊放大器,可應用在無線通訊系統中802.16 WMAN射頻接收機前端電路,選用的基本架構為疊接式(Cascode)電路架構。此架構可以提供高增益、降低供應電壓和消耗功率。此低雜訊放大器所獲得之增益為15.16dB~16.34dB,雜訊值為2.71dB~2.94dB,輸入返回損耗為-7.82dB ~ -9.35dB,輸出返回損耗為-10.93dB~-13.94dB,反向隔離度為-37.67dB~-50.77dB。

關鍵字

低雜訊放大器 pHEMT Ku-Band X-Band K-Band

並列摘要


This thesis presents the design of wideband low noise amplifier (LNA) using WIN 0.15μm pHEMT process to design the circuit. Three frequency bands in the range of 8 GHz to 27 GHz were conducted. The LNAs adopted three kinds of configuration in this thesis. They are resistance feedback, source inductor degeneration, and current reused technique. At first, a X-Band low noise amplifier was designed. The adopted structure is the resistance feedback amplifier, which provides flat gain, good input impedance match and better stability condition for the amplifier circuit. This low noise amplifier achieves the following characteristics: gain 17.89dB~19.37dB, noise figure 2.82dB~3.18dB, input return loss -15.37dB~-25.14dB, output return loss -12.41dB~-13.31dB, and isolation -34.85dB~ -45.64dB. In the second part, a Ku-band low noise amplifier was designed for the very small aperture terminal. The structure of cascode technique was chosen which gives a high gain and low supply voltage and power consumption. Simulated data show that this low noise amplifier has a gain of 13.8dB ~15.05dB, noise figure 2.48dB~2.97dB, input return loss -12.39dB ~-13.07dB, output return loss -10.17dB~-10.86dB, and isolation -38dB ~-43.79dB. Finally, a K-Band low noise amplifier is designed for RF Receiver Front-End in wireless communication systems. The structure of current reused technique was chosen which gives a high gain and low supply voltage and power consumption. Simulated data show that this low noise amplifier has a gain of 15.16dB~16.34dB, noise figure 2.71dB~2.94dB, input return loss -7.82dB~-9.35dB, output return loss -10.93dB ~ -13.94dB, and isolation -37.67dB ~ -50.77dB.

並列關鍵字

Low noise amplifier pHEMT Ku-Band X-Band K-Band

參考文獻


[1]吳佳品,2010,“應用於超寬頻低雜訊放大器與X頻帶功率放大器pHEMTs射頻晶片設計”,長庚大學電子工程研究所碩士論文,1月。
[2]劉根龍,2009,“超寬頻低雜訊放大器之設計”,大同大學電機工程研究所碩士論文,7月。
[3]David M. Pozar, “Microwave Engineering-3rd”, John Wiley & Sons, Inc.
[4]Guillermo Gonzalez, “Microwave Transistor Amplifiers: Analysis and Design-2nd”, Prentice-Hall.
[5]黃振洋,2005,“應用於無線區域網路與寬頻帶系統之低雜訊放大器設計”,國立中央大學電機工程研究所碩士論文,6月。

被引用紀錄


蔡雨哲(2014)。設計於X-Band及K-Band之低雜訊放大器〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://doi.org/10.6827/NFU.2014.00056

延伸閱讀