本論文中主要研究K-Band及X-Band低雜訊放大器(Low noise amplifier, LNA)。電路實現採用穩懋半導體公司(WIN Semiconductors Corp) 0.15um pHEMT 製程。論文總共利用兩種放大器架構進行設計,分別為電流再利用架構與典型疊接式架構,並對上述放大器進行分析模擬比較。 第一部分K-Band的低雜訊放大器,可應用在車用雷達系統上,選用的架構為電流再利用架構,此架構提供了高增益、良好輸入匹配與降低消耗功率。此放大器的供應電壓VDS = 2.5V,VGS = -0.3V,消耗功率為330 mW其模擬之增益為9 dB,雜訊值為4.32 dB,輸入返回損耗為 -10.5 dB,輸出返回損為-5.54 dB,隔離度為-18.69 dB。 第二部份X-Band低雜訊放大器,可應用於衛星通訊及電子順磁共振(EPR)選用的架構為典型疊接式架構,此架構提供了高增益、高隔離度等優點,為了節省晶片面積,並將電源統一為2.5V。此低雜訊放大器的供應電壓為VDD = 2.5V,消耗功率為161.25 mW,其模擬之增益為11.8 dB,雜訊指數為1.3,輸入反射系數為-16.5 dB,輸出反射系數為-14.1 dB,隔離度為-20 dB。
In this thesis, the main research focused on the designs of K-band and X-band low noise amplifiers(LNAs)。The circuits have been realized using WIN Semiconductors 0.15um pHEMT process. The LNAs adopted two kinds of configurations in this thesis. They are current reused technique and cascode technique. This research compares simulation and measurement results. A K-Band low noise amplifier was designed for the application of automotive radar systems. The adopted structure is the current reused technique, which provides a high gain, good input impedance match, and low power for the amplifier circuit. A voltage source of 2.5V is applied with power consumption 330mW. This amplifier achieved the following simulation results gain 9dB, noise figure 4.32 dB, input return loss -10.5dB, output return loss -5.54dB, and isolation -18.69dB. The other low noise amplifier was designed in X-Band for satellite communications and Electron Paramagnetic Resonance(EPR).The cascode architecture was employed to achieve a high gain, high isolation, low power, and small reduce save chip area. A voltage source of 2.5V is applied with power consumption 161.25mW. This low noise amplifier achieves the following simulation results gain 11.8 dB, noise figure 1.3 dB, input return loss -16.5 dB, output return loss -14.1dB,and isolation -20 dB.