透過您的圖書館登入
IP:3.142.244.250
  • 學位論文

奈米深度玻璃流道中磁性流體之毛細充填現象

Capillary Filling of Ferrofluid in One Dimensional Nanochannels

指導教授 : 郭如男
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究是以硼矽酸玻璃(載玻片,厚度為 1- 1.2 mm )為材料,再經由黃光微影製程及濕式蝕刻製作出深度為奈米尺度的一維奈米流道,最後由熱熔融接合方式以400 ?C 預熱 8 小時再以 580 ?C 加熱 8 小時將流道基板與上蓋接合,製作出深度為奈米尺度(50 nm~150 nm)、寬度為微米尺度(30 μm~200μm)的奈米級流體晶片。本研究首先將奈米流道深度在次微米與奈米尺度中改變,並固定其充填長度與寬度,則流道深度愈深,其充填速度愈快;而奈米流道寬度在微米尺度中改變,並固其定充填長度與深度,其充填速度沒有太大變化。本研究分為三個部份來探討毛細充填的現象:三種不同濃度的磁性流體、三種不同溫度的磁性流體以及加入磁力吸引磁性流體來探討其毛細充填的現象。本研究在固定流道尺寸(長度為 8 mm,深度為 150 nm及寬度為 200 μm)下進行探討:研究顯示充填三種不同濃度的磁性流體,其濃度愈高磁性流體充填速度愈慢;接著在奈米流道出口端加入磁力,並充填高濃度(10 mg/ml)磁性流體,則毛細充填愈接近出口端充填速度愈快;最後使用高濃度(10 mg/ml)磁性流體並改變其溫度來充填,則50?C時充填速度最快,而4?C時充填速度最慢。

並列摘要


This paper presents a method to characterized slide-slide glass bonding process for the fabrication nanofluidic channels with depths down to the nanometer scale without cost-expensive lithography. The nanofluidic channels was fabricated on the substrate of borosilicate glass (slide, thickness of 1-1.2 mm) by BOE wet etching process, and preheat in a furnace at 400 oC with another flat slide before glass-glass fusion bonding (580 oC). The capillary filling speed of ferrofluid combine with magnetic and temperature effects in one dimensional nanochannels is investigated. Nanochannels with depths ranging from 50 to 150 nm and widths ranging from 30 to 200 μm are fabricated. The experimental results show that capillary filling speed of ferrofluid reduces with a narrow channel width, an increasing ferrofluid concentration, and a lower operation temperature. Furthermore, the filling speeds of ferrofluid reduces with an increasing filling length, but combine with magnetic effect the filling speed is increased and the more near the magnet is the more obviously.

參考文獻


[33] 陳冠宇,“微流道毛細填充流動之理論與實驗研究”,淡江大學機械與機電工程系,碩士論文,2007。
[1] Z. Yang, S. Matsumoto, H. Goto, M. Matsumoto and R. Maeda, “Ultrasonic micromixer for microfluidic system,” Sensors and Actuators A, vol. 93, pp. 266-272, 2001.
[2] N. Vandelli, D. Wroblewski, M. Velonis, and T. Bifano, “Development of a MEMS microvalve array for fluid flow control,” J. of Microelectromechanical Systems, vol. 7, no. 4, pp. 395-403, 1998.
[3] K. S. Yun, I. J. Cho, J. U. Bu, C. J. Kim and E. Yoon, “A surface-tension driven micropump for low-voltage and low-power operations,” J. Microelectromech. Systems., vol. 11, no. 5, pp. 454-461, 2002.
[4] J. Han, and H. G. Craighead, “Separation of long DNA molecules in a microfabricated entropic trap array”, Science, vol. 288, pp. 1026-1029, 2000.

延伸閱讀