透過您的圖書館登入
IP:18.117.153.38
  • 學位論文

微流道毛細填充流動之理論與實驗研究

Theory and Experiment of the Microchannel Capillary Filling Flow

指導教授 : 楊龍杰

摘要


本研究以聚對二甲苯(parylene)作為微流道的材料,利用面型微細加工(surface micromachining)技術製作出具入口緩衝區的微流道晶片,並以丙酮、甲醇、乙醇、異丙醇和純水作為毛細力填充流體(filling flow),成功使用高速顯微系統,觀察紀錄低表面能液體填充流的位置與時間關係;在微流道填充流動的理論推導方面,本文利用不可壓縮流(Incompressible Flow)Navier-Stokes方程式,來推導毛細位移與填充時間的關係式,並加以無因次化,繪製出理論曲線與實驗結果進行比較。 在動態接觸角量測方面,製作ㄧ個傾斜平台,放置鍍有parylene的基材,比較DI Water在傾斜與水平的基材,其靜態接觸角的差異;由於,parylene置於一傾斜平台,DI Water液滴處於一個即將滑動的狀態,其前端動態接觸角較為靜態接觸角大20度左右,與文獻[33]所反推之DI Water與parylene接觸角為90度左右,有其吻合的趨勢。

並列摘要


In experiment aspects, the thesis fabricates a silicon chip with parylene microchannels having a buffer zone from beginning to end by surface micromachining. Channels are characterized using spontaneous capillary filling with acetone, methanol, ethanol, isopropanol and de-ionized water. The moving images of filling flow meniscus are successfully measured by using the video camera of high speed. In theory aspects, a mathematical model is developed to understand the functional relationship among flow displacement, flow time, surface tension, and viscosity for laminar flow in parylene channels by using the incompressible Navier–Stokes equation. Further, the study use dimensionless analysis for the purpose of comparing the displacement of different solutions. In dynamic contact angle measurement, the thesis fabricates an inclined platform putting the substrate with parylene on. After that, de-ionized water is dripped on the chip, and the result on the inclined platform is compared with that on the horizontal platform.

並列關鍵字

MEMS parylene Capillary Filling flow Contact angle

參考文獻


[41] H. J. Wang et al., “Capillary of Rectangular Micro Grooves and their Application to Heat Pipes,” Tamkang Journal of Science and Engineering, Vol. 8, No. 3, pp.249-255 (2005)
[1] N. Tas et al., “2D-Confined Nanochannels Fabricated by Conventional Micromachining,” Nano Letters, Vol. 2, No. 9, pp. 1031-1032 (2002)
[2] N. Tas et al., “Capillarity Induced Negative Pressure of Water Plugs in Nanochannels,” Nano Letters, Vol. 3, No. 11, pp. 1537-1540 (2003)
[3] N. Tas et al., “Capillary Filling Speed of Water in Nanochannels,” Applied Physics Letters, Vol. 85, No. 15, pp.3274-3276 (2004)
[4] A. Hibara et al.,“Nanochannels on a Fused-Silica Microchip and Liquid Properties Investigation by Time-Resolved Fluorescence Measurements,” Analytical Chemistry, Vol. 74, No. 24, pp. 6170-6176 (2002)

被引用紀錄


林伯育(2015)。利用微流道尺寸過濾血漿之微流體晶片〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://doi.org/10.6827/NFU.2015.00014
楊博智(2013)。微流道中磁性流體之毛細充填〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://doi.org/10.6827/NFU.2013.00153
王韋凱(2013)。奈米深度玻璃流道中磁性流體之毛細充填現象〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://doi.org/10.6827/NFU.2013.00152
范矩霖(2007)。具離子電泳功能並可長期植入之神經探針〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2007.01175
林義凱(2011)。奈米深度玻璃流道製作與毛細充填現象之研究〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0028-2305201122175500

延伸閱讀