透過您的圖書館登入
IP:3.144.140.4
  • 學位論文

奈米深度玻璃流道製作與毛細充填現象之研究

Capillary Filling in One Dimensional Nanochannels Fabricated Using Thin Glass-Glass Bonding

指導教授 : 郭如男
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究是以薄的蓋玻片為材料,再經由一般黃光微影製程來製造流道,並希望將流道的深度由微米尺度降到奈米尺度,進而完成實驗所需要的ㄧ維奈米流道,最後再以熱熔融接合方式來將流道密封起來就完成了深度為奈米級的流體晶片。本研究流道與上蓋是以硼矽酸玻璃(蓋玻片,厚度為160 μm)為材料,以濕式蝕刻方式蝕刻出一維奈米流道,其蝕刻液為Buffered Oxide Etchant (BOE),一維奈米流道完成後再與流道之上蓋一起放入高溫爐中以400 ℃預熱8個小時,預熱完成後再以580 ℃加熱8小時,將上蓋與流道熱熔融結合密封在一起。本研究以熱熔融接合方式來密封一維奈米流道,目前最淺的流道深度為20 nm的一維奈米流道,而流道可達到之最小深寬比為0.0002 (深度為40 nm,寬度為200 μm)。本實驗主要是為了製造出晶片厚度較薄與透明度較高的一維奈米流道玻璃晶片,其優點在於實驗需要高倍率或螢光反應檢測時,可以得到較佳的檢測結果。最後本研究再藉由密封完成不同深度與寬度的一維奈米流道來研究毛細充填速度與流道幾何形狀之關係,並使用商用軟體ANSYS來模擬毛細充填之流速來對理論值與實驗值作比較,希望本研究對於未來研究蛋白質與生物檢測時有所助益。

並列摘要


This paper presents a method to characterized thin glass-glass bonding process for the fabrication nanofluidic channels with depths down to the nanometer scale without cost-expensive lithography. The nanofluidic channels was fabricated on the substrate of borosilicate glass (coverslip, thickness of 160 μm) by BOE wet etching process, and preheat in a furnace at 400 oC with another flat coverslip before glass-glass fusion bonding (580 oC). We demonstrate that glass-glass nanofluidic channels as shallow as 20 nm. Nanochannels as deep as 40 nm on glass substrate with low aspect ratio of 0.0002 (depth to width) can be achieved. The main advantage of the technique is the transparency and thickness of nanofluidic chip, which allows optical fluorescence microscopy to be used in high magnification condition such as protein and biomolecule detection, and so forth. The nanofluidic channels is analyzed under different depth-to-width ration conditions using a finite element model. In this study, the depth-to-width ratio of channel and the velocity of DI water on the capillary filling of nanofluidic chip are systematically investigated.

參考文獻


[29] 陳冠宇,“微流道毛細填充流動之理論與實驗研究”,淡江大學機械與機電工程系,碩士論文,2007。
[1] N. Vandelli, D. Wroblewski, M. Velonis, and T. Bifano, “Development of a MEMS microvalve array for fluid flow control”, J. of Microelectromechanical Systems, vol. 7, no. 4, pp. 395-403, 1998.
[2] K.S. Yun, I. J. Cho, J. U. Bu, C. J. Kim, E. Yoon, “A surface-tension driven micropump for low-voltage and low-power operations”, J. Microelectromech. Systems., vol. 11, no. 5, pp. 454-461, 2002.
[3] Z. Yang, S. Matsumoto, H. Goto, M. Matsumoto , R.Maeda, “Ultrasonic micromixer for microfluidic system”, Sensors and Actuators A, vol. 93, pp. 266-272, 2001.
[4] J. Han, and H. G. Craighead, “Separation of long DNA molecules in a microfabricated entropic trap array”, Science, vol. 288, pp. 1026-1029, 2000.

被引用紀錄


楊博智(2013)。微流道中磁性流體之毛細充填〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://doi.org/10.6827/NFU.2013.00153
王韋凱(2013)。奈米深度玻璃流道中磁性流體之毛細充填現象〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://doi.org/10.6827/NFU.2013.00152
吳建良(2015)。利用Nd:YVO4雷射加工玻璃母模並應用於微流道中血漿毛細充填〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0028-3007201522120800

延伸閱讀