透過您的圖書館登入
IP:18.117.91.153
  • 學位論文

端銑刀之刃口研磨精度最佳化設計

Optimal Design of Grinding Accuracy for Cutting Edges of End Mills

指導教授 : 李炳寅
共同指導教授 : 陳進益(Jenn-Yih Chen)
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


鏡面加工是一種對於加工表面非常要求的加工方式其影響層面包括機台剛性、加工參數、被加工材的特性以及加工刀具,尤其是刀具刃口的研磨精度更為重要,目前刀刃口優化的研究以及實際的的應用多半是針對替換式刀片進行開發,對於端銑刀具則鮮少探討,故本研究為針對端銑刀之刃口研磨精度做最佳化設計的分析與討論。 由於研磨端銑刀時其徑向與軸向的負載不盡相同,故本研究將端銑刀之刃口研磨精度分為徑向刃口與軸向刃口進行分析討論。端銑刀之刃口是由切削面與離隙面所組成,本研究中影響刃口研磨精度的製程參數為離隙面砂輪粒度、離隙面NC節距、離隙面進給速度、離隙面線速度、切削面砂輪粒度、切削面NC節距、切削面進給速度、切削面線速度。評估研磨性能特性指標為離隙面粗糙度、切削面粗糙度以及刃口平整度,使用灰關聯分析探討多品質特性問題,最後由單品質與多品質特性之變異數分析探討各因子的貢獻度,並做最佳化製程參數分析。 徑向刃口研磨精度變異數分析顯示離隙面粒度、離隙面進給速度以及切削面粒度為顯著因子,其總貢獻度為84.43%。最佳製程參數為離隙面粒度SDC600、離隙面線速度25m/s、離隙面進給速度50mm/min、離隙面節距0.05mm、切削面粒度SDC600、切削面線速度10m/s、切削面進給速度100mm/min、切削面節距0.1mm,其切削面研磨精度為0.479μm、離隙面研磨精度為0.425μm以及刃口平整度為2.676μm。軸向刃口研磨精度變異數分析顯示離隙面進給速度以及切削面粒度為顯著因子,其總貢獻度為75.37%。最佳製程參數為離隙面粒度SDC600、離隙面線速度25m/s、離隙面進給速度10mm/min、離隙面節距0.05mm、切削面粒度SDC600、切削面線速度10m/s、切削面進給速度10mm/min、切削面節距0.01mm,其切削面研磨精度為0.374μm、離隙面研磨精度為0.317μm以及刃口平整度為1.884μm。

並列摘要


Mirror finishing is a high precision machining method, it would be effected by structure rigidity of machine center, material property, cutting tool, especially the grinding accuracy for cutting edge of tool. At present, it mainly develop to the throw away inset tip in the study of optimization for cutting edge and practical applications, but it rarely study for end-mills. As above, this thesis aims to analyze and discuss the optimal design of grinding accuracy for end-mill cutting edge. Because the chip load might be different when grinding the radial and axial of the end-mills, therefore it would analyze and discuss by dividing into radial and axial in this study. The cutting edge is be generated by grinding rake surface and relief surface. The grinding parameters of cutting edge are relief grain size, relief spindle speed, relief feed rate, relief NC step, rake grain size, rake spindle speed, rake feed rate, rake NC step. The relief surface roughness, rake surface roughness and chipping are the major performance indexes of grinding processes. It is that use the Grey Relational Analysis (GRA) to analyze and discuss the multi quality characteristic problems in this study. Finally, it is that analyzes and discusses the contribution of control factors between mono quality characteristic and multi quality characteristic, and analyzes the optimization grinding process parameters experimental. The ANOVA of radial cutting edge accuracy show that relief grain size, relief feed rate and rake grain size are significant factors, and its contribution is 84.43%. The optimization grinding process parameters are relief grain size is SDC600, relief spindle speed is 25m/s, relief feed rate is 50mm/min, relief NC step is 0.05mm, rake grain size is SDC600, rake spindle speed is 10m/s, rake eed rate is 100mm/min, rake NC step is 0.1mm. The rake surface accuracy is 0.479μm, the relief surface accuracy is 0.425μm and the cutting edge accuracy is 2.676μm. The ANOVA of axial cutting edge accuracy show that relief feed rate and rake grain size are significant factors, and its contribution is 75.37%. The optimization grinding process parameters are relief grain size is SDC600, relief spindle speed is 25m/s, relief feed rate is 10mm/min, relief NC step is 0.05mm, rake grain size is SDC600, rake spindle speed is 10m/s, rake feed rate is 10mm/min, rake NC step is 0.01mm The rake surface accuracy is 0.374μm, the relief surface accuracy is 0.317μm and the cutting edge accuracy is 1.884μm.

參考文獻


[11]陳伯瑄,2011,”鑽石砂輪磨削端銑刀具之加工性能研究”,國立虎尾科技大學創意工程與精密科技研究所碩士論文,。
[22]台灣鑽石工業股份有限公司,技術手冊。
[3]Kimura T, 1974, “The diamond grinding of cemented carbide,” Industrial Diamond Review, 203, 9.
[4]Amir Abdullah, Abbas Pak, Mahdi Farahi, Mohsen Barzegari, 2007, “ Profile wear of resin-bonded nickel-coated diamond wheel and roughness in creep-feed grinding of cemented tungsten carbide,” Journal of Materials Processing Technology, 183, pp. 165-168.
[5]J.L. Cantero, J.DıazAlvarez, M.H.Miguelez n, N.C.Marın, 2012, “Analysis of tool wear patterns in finishing turning of Inconel 718,” Journal of Wear, 297, pp. 885-894

被引用紀錄


陳政綱(2015)。鋁合金工件側銑削之表面品質研究〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://doi.org/10.6827/NFU.2015.00106
楊承翰(2014)。微銑削參數最佳化研究〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://doi.org/10.6827/NFU.2014.00084
曾淯聖(2016)。銑削玻璃塑鋼之刀具最佳化設計〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0028-0909201611504100
吳育儒(2016)。端銑刀之研磨精度與碳化鎢鈷含量對塑膠材料切削性能分析〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0028-0609201617422400
李孟宸(2016)。銑削工程塑膠之最佳化刀具設計與刀具研磨效能分析〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0028-1307201617393000

延伸閱讀