透過您的圖書館登入
IP:18.118.1.158
  • 學位論文

銑削玻璃塑鋼之刀具最佳化設計

The Study of Optimal Tool Design for Milling Glass-reinforced Plastic

指導教授 : 李炳寅
共同指導教授 : 陳進益(Jin-Yi Chen)
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


刀具是製造業不可或缺的工具,近年來手機蓬勃發展使得手機外殼採用各式各樣的材料,例如鋁合金、鈦合金、塑膠材料等。本論文主要是設計刀具幾何與加工研磨參數以提升刀具在銑削玻璃塑鋼時的刀具壽命與工件的表面品質,首先,刀具幾何最佳化是使用田口法L9(3^4 )直交表作配置,控制因子為端銑刀的徑向切削角、徑向離隙角、軸向切削角、軸向離隙角,實驗目標為增加刀具壽命、減少刀腹摩耗與工件毛邊,再經由變異數分析與多品項分析結果發現,離隙角主要是影響刀腹磨耗;徑向切削角影響毛邊大小。第二部分刀具研磨參數最佳化,使用田口法L50 (2^(1 ) 〖x 5〗^11 )直交表配置,使用因子線速度、進給、粒度,實驗目標為減少研磨時間、提升刃口平整度、刀腹表面粗糙度,經由變異數分析與多品項分析結果發現,影響刃口平整度都是剖溝工程的粒度,因為剖溝精磨剛好是工程最後一道程序,所以只要將剖溝工程粒度用最細的砂輪,其他不重要工程加快進給,這樣可以達到研磨品質需求且可以減少研磨時間。

並列摘要


Cutting Tools are indispensable for manufacturing industry. In recent years, the rapid development of smartphones made manufacturers use various materials for housings, such as aluminum alloy, titanium alloy, or plastics. The aim of this thesis was to design the tool geometry and the grinding parameters to improve the tool life and surface roughness for milling the glass-reinforced plastic. At first, the L9(3^4 ) orthogonal array was utilized for optimizing the tool geometry, and the control factors were radial rake angle, radial relief angle, axial rake angle, and axial relief angle. The objects of the experiments were to increase the tool life, reduce the flank wear of tools and burrs of workpieces. ANOVA and the analysis of multiple quality characteristics found that the relief and radial rake angles affected the flank wear and burrs, respectively. The second part applied the L50(2^1×5^11) orthogonal array for the optimization of the grinding parameters. The goal in the experiments was to reduce the grinding time, improve the flank roughness and flatness of cutting edges. The grain size of fluting wheels affected the flatness of cutting edges by ANOVA and the analysis of multiple quality characteristics because the finished grinding of flutes was the last procedure. As long as end users chose the finest grain size of grinding wheels and accelerated the feed of unimportant procedures, this can achieve to improve the grinding quality and reduce the grinding time.

參考文獻


[1] 高振凱,2011,”銑削碳化鎢之最佳化刀具幾何設計研究”,國立虎尾科技大學機械電腦輔助工程研究所,27-45頁。
[2] 吳易濃,2013,”端銑刀之刃口研磨精度最佳化設計”,國立虎尾科技大學機械電腦輔助工程研究所,30-55頁。
[4] 呂淮熏、李炳寅、鐘証達,”高速銑削SKD61 模具鋼用端銑刀製成參數最佳化設計”,技術學刊,第二十五卷,第二期,民國99年。
[10] Reddy Sreenivasulu, 2013, ”Optimization of surface roughness and delamination damage of GFRP composite material in end milling using Taguchi design method and artificial Neural network,” Procedia Engineering, Vol. 64, pp. 785–794.
[11] G. Kiswanto, D.L. Zariatina, K.J. Ko, 2014, ”The effect of spindle speed, feed-rate and machining time to the surface roughness and burr formation of Aluminum Alloy 1100 in micro-milling operation,” Journal of Manufacturing Processes, Vol. 16, pp. 435–450.

延伸閱讀