隨著科技產業復甦、經濟快速成長與產品的多樣化,國內外工業也越來越發達,各項產品之要求標準也相對提高,此時高速、高效率、高精準之刀具精度與銑削相關製程也顯得極為重要,如何有效提升加工之精準度,為一重要課題。 本文實驗工件為碳化鎢材料,同時分為粗加工與精加工兩個部份,然而在銑削過程中,難免會因為控制因子的參數水準設計或受到誤差因素的干擾,而使得切削工件的尺寸精度有所差異,因此本研究主要利用田口直交表配置不同的刀具幾何角度與加工參數作切削,此因田口方法能夠有效的降低所耗費的時間與成本,而達到最高的實驗效率以增進製程的穩定性,同時實驗各因子間皆為獨立性,所以使用L32(21x49)直交表規劃各因子水準作實驗,依據結果進行變異數分析,接著使用灰關聯分析結合多目標轉換為單一目標,以求達到多目標之最佳因子組合。 由實驗結果進行變異數分析及灰關聯分析,經由驗證得知粗加工實驗調高徑向切削角與離隙角之角度,降低軸向切削角及離隙角之角度,使用低切線速度與每刃進給配合微小切深量,將能有效提升加工效率;精加工則是刀具幾何影響較小,但降低銑削速度及切深量,可得到較佳之精細表面粗糙度。
The domestic and foreign industry develops quickly owing to the recovery of the technology industry, rapid economic growth, and diversification of products. The requirements of the standard for products are also relatively increased. The high accuracy of cutting tools and milling processes are also extremely important. How to effectively improve the accuracy of machining is a critical issue. In this study, the experiment was divided into rough machining and finish machining, and the material of workpieces is tungsten carbide. The Taguchi method was utilized for assigning different tool geometry and machining parameters due to this approach could save the time and cost effectively. Furthermore, it could achieve high experimental efficiency to enhance the robustness of manufacturing processes. An L32 (21x49) orthogonal array was applied to the experiment and the variance was analyzed. We employed the gray relational analysis to obtain the optimal combination of factors. In order to improve the efficiency of rough machining, one could increase the radial rake angle and clearance angle, and reduce the axial rake angle and clearance angle of cutting tools by the experimental verification. The tool geometry had low effect on finish machining. However, one could decrease the milling speed and the depth of cut to obtain good surface roughness.