透過您的圖書館登入
IP:18.225.7.243
  • 學位論文

六軸機械手臂之微運動學控制策略於自動化產線之應用

Design of Differential Kinematic Control Strategy for a Six-axis Robotic Arm Applied in Automatic Production Line

指導教授 : 李政道
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


近年來各國人口結構面臨高齡化與少子化的衝擊,使得各行各業產生缺工之問題日益嚴重,其中惡劣與危險的工作環境更是無人想踏入,因此許多廠商嘗試引入自動化設備取代人為的操作,本論文針對研磨之危險工作環境,利用機械手臂建構一自動化產線。首先,本論文修復已不符使用之六軸機械手臂,並探討機械手臂運動學與微運動學方程式,並設計開發機械手臂控制器與人機介面,分別使用正反運動學與微運動學兩種不同方法控制機械手臂移動研磨路徑,並比較兩者方法發現微運動學更適用在研磨生產線,最後整合並聯型機械手臂、龍門型機械手臂和倉儲系統,完成具有影像辨別之雷射雕刻與研磨自動化產線建構,此產線可快速應用於目前業界中多種雷射雕刻與研磨產線,除提升作業人員之安全性亦同時提高產品加工之精細度。

並列摘要


Shortage of labor due to ageing society and low birth rate is a big problem in all walks of life in recent years. Besides, nobody wants to work at a high risk and highly dangerous environment. Therefore automated equipment will be needed to replace the manufacturers in many companies. A grinding production line with six-axis manipulators had been repaired and established the robotic arm control system by ourselves in this thesis. Kinematics and differential kinematics formula of the robot arm have been adopted in the robot arm controllers. Moreover, the human–machine interaction of the control system with two different methods has been designed for operator convenience. According to experimental results, differential kinematics formula is more suitable in grinding moving tracks. Finally, the automatic laser engraving and grinding production line with multiple robotic arms had been built successfully.

參考文獻


[1] 黃彥棻。張善政:超越工業4.0的生產力4.0,是臺灣科技政策下一步。iThome電腦報。2015年6月號。
[2] 張所鋐。名家觀點卅推動生產力4.0 進軍國際舞台。經濟日報。2015月10月20號。
[3] 余至浩。西門子:臺灣借鏡德國工業4.0有4大挑戰。iThome電腦報。2015年06月5號。
[4] 龔應時,吳敏光,鍾子涵,李欣泓,陳文泉,” 運動學/反運動學控制硬體IP設計開發”,南台大學電機工程系,工研院機械所智慧機械技術組機電控制整合部,2012年6月。
[5] Mittal and Nagrath, Robotics and Control (1st ed) United States: McGraw-Hill Education, 2013.

延伸閱讀