透過您的圖書館登入
IP:18.118.28.197
  • 學位論文

開發具有可調機械性質之三維列印高分子生醫材料

Development of 3D Printing Bio-Medical Polymeric Materials with Tunable Mechanical Properties

指導教授 : 林欣杰

摘要


三維列技術於近年來逐漸躍升成為一項具有生物醫學重要性的技術。為因應各種不同應用之需求,材料學家必須配合其所希望之產品特性而設計出可列印且具有生物醫學利用價值之產品。本研究分成兩個部分,每一部分將因應不同種類的三維列印系統與產品應用,近一步考量材料特性,並且設計出適合其個別目的且可列印之高分子材料。 第一部分將著重於可光固化之高分子材料。我們將多種具有丙醯鍵之高分子做比較,探討其可列印性,遇水後之膨脹性,與可觀察之材料強度,並從中選擇適合的高分子作為後續發展之基楚材料。於一開始的實驗中,我們將以兩種不同方式嘗試改良高分子於不同環境下所表現之材料特性,並以最終設計之產品為指標,盡可能地使特性相像。此後,我們利用田口實驗設計方法,對於主材料以外之一系列添加物做分析。不同配方之高分子混合物在列印出試片後,經由微拉伸試驗儀對其做正向拉伸實驗。實驗後,經由數據處理計算出各組實驗之韌性強度、最大應力、與最大應變。此三組數據最後再經由田口實驗分析方法,進而探討表現值、訊號強度、標準差、與材料間交互作用等數據,整理出最佳配方,且同時展示對於分析之重要參數,以供未來他種材料設計為參考。 第二部分將以擠出成型列印系統為主軸,而發展出一班具有剪切稀化特性之材料。此部分利用由主客關係所形成之二次鍵結,近一步改植甲殼素原有之機械性質,已形成高強度且具有可列印性之材料。我們將β-環糊精與金剛烷接合於甲殼素醣鍊上,進而驅使其成為具有能夠形成主客系統之結構。此一改直過後的甲殼素化合物,經由一系列以加工列印流程為模擬而特殊設計的流變實驗,來量化其膠體性質。實驗數據進一步的與一市售之列印材料以及純甲殼素膠體做比較,進一部探討改直後是否於材料性質上有任何改變,以及我們針對加工列印流程所設計之實驗是否具有助於此類材料之研究與開發。 總結以上所述,我們針對了兩種常應用於生物醫學之三維列印系統,開發出兩種相對的材料。實驗結果除了順利開發出材料之外,同時也展示出於開發時所需特別注意之各項關鍵性質,而此將對於後續他種材料開發提供參考與協助。

關鍵字

三維列印 高分子 生醫材料

並列摘要


Three dimensional (3D) printing has emerged over the years to become one of the most important technologies in biomedical applications. Material scientists are thus tasked with the intriguing but never ending problem of designing materials to fit the application needs. In this study, we attempt to formulate two kinds of polymeric materials into biological applicable products. The first part of the study focuses on a photo-curable polymer. We first compared different kinds of acrylate derivatives in terms of printability, swelling and observed strength to determine the main material in the formula. Several approaches were made in attempts to tweak the main material towards what we have envisioned. Next, we impart the Taguchi method for designs of experiments on the improvement of the decided main material, were printed samples were taken to MTS for tensile tests, and the material toughness, ultimate stress and fracture strain data sets were calculated. The MTS analysis data were then imputed into the design matrix for statistical study, where values of means, signal to noise ratio, standard deviation, and interaction signals between materials helps us predict a bet formulation and gives us a designing insight for similar systems in the future. In the second part of the study, we attempt to develop a hydrogel based material for a more general inkjet printing system. Utilizing the secondary force provided by a host-guest complex, we aim to enhance the gel properties of chitosan in order to produce a mixture fit for 3D printing. Chitosan was first modified with β-cyclodextrin and adamantane to add functionality to the polymer. The result product was then analyzed by a series of rheological tests which we specifically designed to simulate the processing procedures of a typical extrusion based 3D printer. The results were compared with a commercially available gel and pure chitosan gel to see whether or not there is an improvement in mechanical properties. As a conclusion, we have developed two distinct polymer mixtures to fit into the parameters of two different 3D printers. The results conclude several criteria which needs to be considered for manufacturing developments. Extensive work can be done on both designs for further conformation or improvement of the products, where the properties can be adjusted to fit specific application needs.

並列關鍵字

3D printing polymers biomedical materials

參考文獻


1. Zhang, J.; Xiao, P., 3D printing of photopolymers. Polymer Chemistry 2018, 9 (13), 1530-1540.
2. Matsuda, T.; Mizutani, M., Liquid acrylate-endcapped biodegradable poly( -caprolactone-co-trimethylene carbonate). II. Computer-aided stereolithographic microarchitectural surface photoconstructs. J. Biomed. Mater. Res. 2001, 62 (3), 395-403.
3. Malinauskas, M.; Farsari, M.; Piskarskas, A.; Juodkazis, S., Ultrafast laser nanostructuring of photopolymers: A decade of advances. Phys. Rep. 2013, 533 (1), 1-31.
4. Ligon, S. C.; Liska, R.; Stampfl, J.; Gurr, M.; Mulhaupt, R., Polymers for 3D Printing and Customized Additive Manufacturing. Chem Rev 2017, 117 (15), 10212-10290.
5. Jared, K., The Navy Can Now 3D-Print Submarines On The Fly For SEALs. https://taskandpurpose.com/navy-3d-printing-submarines/ 2017.

延伸閱讀