透過您的圖書館登入
IP:3.15.6.226
  • 學位論文

以電爆炸法製備氧化鋅顆粒並探討其電阻式記憶體特性

Resistive Random Access Memory of Zinc Oxide Nanoparticles Generated by Electric Explosion

指導教授 : 簡紋濱

摘要


以電爆炸法製備氧化鋅顆粒並探討其電阻式記憶體特性 研究生:張書銘 指導教授:簡紋濱 教授 國立交通大學理學院應用科技學程 摘要 市場上製作電阻式記憶體的方法其過程太過於複雜繁瑣,且需要操作昂貴的儀器,增加時間及成本負擔。本論文中,使用奈米顆粒製作機製作氧化物奈米材料,再利用噴霧塗佈儀均勻塗佈出薄膜,以此方法有效的縮減氧化層製作時間及成本。 實驗藉由奈米顆粒製造機製作電阻式記憶體氧化層之原料,原理是使用導線電爆炸方法製作出濃度0.02 M氧化鋅顆粒水溶液,將水溶液取樣後使用X光繞線分析儀測量,確定其成分分析結果為氧化鋅水溶液後,再利用穿透式電子顯微鏡觀察氧化鋅形貌與結構型態。 元件氧化層的塗佈方法是在350℃的加熱板上,使用噴霧塗佈儀將製作完成的氧化鋅懸浮顆粒溶液均勻噴塗於在八對金屬電極金(Au)的矽基板表面,製作出 (Au / ZnO / Au)結構之電阻式記憶體元件。實驗中以光學顯微鏡觀察塗佈完成的元件表面氧化鋅的均勻度,並以Keithley 2400量測元件電流電壓曲線(I-V)圖與訊號保持時間 (retention time)。藉由電流電壓曲線 (I-V)圖了解實驗製作的元件之電阻式記憶體特性與低高電阻之開關比,而訊號保持時間是非揮發性記憶體重要的參考條件之一,測試實驗製作的元件在常溫環境下,以0.1 V量測高低電阻訊號在穩定狀態下可以持續維持的時間。

並列摘要


Resistive Random Access Memory of Zinc Oxide Nanoparticles Generated by Electric Explosion Student : Shu – ming Chang Advisor:Wen-Bin Jian Degree Program of Applied Science and Technology National Chiao Tung University Abstract Current methods for making resistive random access memories (RRAMs) consist of complicated processes and expensive equipment that cause high cost and long time. In this thesis, we introduce new manufacturing method to make metal oxide layers. We utilize wire electric explosion machine to produce metal oxide nanoparticles. Then, the oxide nanoparticles are spray-coated to make thin films. Our manufacturing methods are much more efficient that reduces time and cost in the deposition of oxide layers. A home-made wire electric explosion machine is employed to make metal oxide nanoparticles for the RRAM device. The nanoparticle suspension of zinc oxides (ZnO) at a concentration of 0.02 M is prepared. The chemical composition of the ZnO nanoparticle suspension is confirmed by using X-ray diffraction (XRD). In addition, the shape, size and crystalline structure of zinc oxide nanoparticles is inspected by transmission electron microscopy. In order to make oxide thin film, large-area spray coating system is utilized and the nanoparticles are uniformly sprayed on the silicon substrate with eight pre-patterned gold metal electrodes. The as-made RRAM device is checked by optical microscopy and its electrical behaviors are measured by Keithley 2400. We measure the current-voltage loop and evaluate the retention time and the on-off ratio of the device. The current-voltage loop obviously presents a memory characteristic and a transition between high and low resistance state which confirm the nature of an RRAM, non-volatile memory device. All our measurements are done at room temperature in ambient and the retention time is obtained at a reading voltage of 0.1 V.

參考文獻


參考文獻
1. Innovative Research and Products (iRAP), I., Advanced Solid-state Memory Systems And Products: Emerging Non-volatile Memory Technologies, Industry Trends And Market Analysis. April 2011.
2. L. Myoung-Jae, P. Youngsoo, K. Bo-Soo, A. Seung-Eon, L. Changbum, K. Kihwan, X. Wenxu, G. Stefanovich, L. Jung-Hyun, C. Seok-Jae, K. Yeon-Hee, L. Chang-Soo, P. Jong-Bong and Y. In-Kyeong, presented at the International Electron Devices Meeting(IEDM), 2007, Institute of Electrical and Electronics Engineers (IEEE), 2007.
3. Chen, Y.T., Atomic Layer Desosition of HfON Thin Film for Charge Trapping Flash Memory Application. Master thesis, National Tsing Hua University, 2009.
4. 蘇俊榮,”3C電子產品不可缺的靈魂技術 — 浮閘記憶體”,科學發展,第541期,pp. 42-46,2018。

延伸閱讀